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A time domain analytical solution is presented to calculate the pressure response along the axis of a

paraboloidal reflector for a normally incident plane wave. This work is inspired by Hamilton’s

axial solution for an ellipsoidal mirror and the same methodology is employed in this paper.

Behavior of the reflected waves along reflector axis is studied, and special interest is placed on

focusing gain obtained at the focal point. This analytical solution indicates that the focusing gain is

affected by reflector geometry and the time derivative of the input signal. In addition, focused

pressure response in the focal zone given by various reflector geometries and input frequencies

are also investigated. This information is useful for selecting appropriate reflector geometry in a spe-

cific working environment to achieve the best signal enhancement. Numerical simulation employing

the finite element method is used to validate the analytical solution, and visualize the wave field

to provide a better understanding of the propagation of reflected waves. This analytical solution can

be modified to apply to non-planar incident waves with axisymmetric wavefront and non-uniform

pressure distribution. An example of incident waves with conical-shaped wavefront is presented.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4794367]
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I. INTRODUCTION

Paraboloidal reflectors have been widely used in various

fields to collect the energy of sound, light, and radio waves.

The unique geometry of a parabola enables a normally inci-

dent plane wave traveling along the axis to be focused to the

focal point, and the signal strength at the focal point is

enhanced consequently. In nondestructive evaluation, the air-

borne plane waves generated by a planar air-coupled trans-

ducer can be focused by a paraboloidal reflector.1 Recently

Dai et al.2 have used a paraboloidal reflector to amplify the

airborne zero-group-velocity Lamb wave signals radiated

from a concrete plate and to improve the signal to noise ratio.

The S1 zero-group-velocity (S1ZGV) Lamb wave mode has

been found to show high excitability and allow high transmis-

sion efficiency of acoustic waves through plates.3 The S1ZGV

theory also provides theoretical explanation to the impact-

echo testing, a common non-destructive testing (NDT)

method for concrete structures.4 The feasibility of air-coupled

impact-echo testing has been validated on concrete specimens

in laboratory5 and field testing.6 Numerical simulations by

Tsai et al.7 showed that the airborne S1ZGV mode wave radi-

ated from a plate can be regarded as a quasi-plane wave with

a small radiation angle (conical wavefront), which can be

effectively focused by a paraboloidal reflector. The signal

amplification owning to focusing depends on geometry of a

paraboloidal reflector. Therefore, it is essential to understand

the behavior of the reflected waves and the focusing effect

caused by a paraboloidal reflector.

Acoustical properties of a paraboloidal reflector have

long been investigated.8–11 Wahlstrom12 studied the on-axis

pressure response of paraboloidal reflectors and the signal

amplification at the focal point. Wahlstrom used the velocity

potential to derive a solution for incident harmonic plane

waves, and studied the dependence of signal amplification at

focus on reflector geometry and the input frequency. Cornet

and Blackstock13 developed a theoretical solution for a

spherical reflector with an incident spherical N wave gener-

ated by a spark source located on the reflector axis. This so-

lution employs the Kirchhoff-Helmholtz (K-H) integral

theorem to obtain the reflected response along the reflector

axis. Hamilton14 further extended their solution and derived

a transient axial solution for an ellipsoidal reflector with a

spark source located at the near focus. Geometrical acoustics

was used to describe the initial condition on reflector sur-

face. Hamilton15 and Gelin16 later also investigated reflec-

tion of a spherical wave from a paraboloidal mirror

analytically and experimentally.

In this paper the authors employ the same analysis pro-

cedure used in Hamilton’s work14 to obtain the transient

pressure response along the axis of a paraboloidal reflector

for a normally incident plane wave. This paper includes four

major components. First, the axial pressure response

obtained using geometrical acoustics and K-H integral is

presented, and the behavior of the reflected waves is
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discussed. Second, on-axis pressure responses obtained from

numerical simulations are presented for comparison, and the

wave field is visualized using numerical simulation results.

Third, signal amplification at the focal point and the size of

focal zone are investigated for reflectors with various geo-

metries and incident plane waves with different frequencies.

Finally, the authors show the potential application of this so-

lution to incident waves with axisymmetric wavefront and

non-uniform pressure distribution. An incident wave with a

conical-shaped wavefront is presented as an example.

II. METHODOLOGY

The analytical solution presented in this paper calculates

the time-domain pressure response along the axis of a parab-

oloidal reflector for a normally incident plane wave. The

method in Hamilton’s work14 based on geometrical acoustics

and the K-H integral is employed. The pressure distribution

over the reflector surface is first obtained by geometrical

acoustics. The axial response of the reflected and diffracted

wave field is then calculated using the K-H integral, which

can be used to find pressure at any point in an enclosed sur-

face if the pressure on the surface is specified.

Figure 1 shows the model of a paraboloidal reflector and

a source plane that radiates plane waves. The geometry of

paraboloidal reflector is described by the equation r2 ¼ 4zFz,

where zF is the focal length (distance between reflector ver-

tex and focal point). The variable h represents the depth of

the reflector and hv is the distance between the vertex and

the source plane. The symbol zs denotes the z coordinate of

any point on the reflector surface and rF represents the dis-

tance between that surface point and the focal point. These

two variables have the relation of rF ¼ zF þ zs according to

the geometric property of a parabola. For an incident plane

wave with amplitude of p0, p1 represents the wave pressure

on the reflector surface, and p2g denotes the reflected pres-

sure in space at a distance r2 from the focal point, where the

subscript “g” represents geometrical acoustic estimation.

Figure 1 shows two observation points located along the

reflector axis. Point A is located “before” the focal point and

point B is “beyond” the focal point. The distance between an

observation point and any point on the reflector surface is

defined by R.

A. Geometrical acoustics

As shown in Fig. 1, the source plane generates plane

waves with sizes large enough to cover the entire reflector

aperture. When the plane wave reaches the reflector surface,

the reflector will focus waves to the focal point. Geometrical

acoustics is valid for ka� 1, where k is the wavenumber of

the lowest frequency of incident wave, and a is the minimum

radius of curvature of the paraboloidal reflector.17 Within the

frame work of geometrical acoustics, the incident sound

waves are represented as a group of rays. Geometrical acous-

tics is employed to determine the pressure amplitude at any

point along the ray path, and to calculate the travel time of a

sound wave.

The reflected pressure along the ray path is estimated as

follows. First, under the assumption that the pressure ampli-

tude of the incident plane wave does not change until it

reaches reflector plane, the incident pressure on the surface

(p1 in Fig. 1) has an amplitude of p0. By assuming the reflec-

tion coefficient at the reflector�air interface as 1, the

reflected pressure amplitude equals to p0 as well. Therefore,

the reflected pressure on the reflector surface is described as

p1ðt; zsÞ ¼ p0f t� hv � zs

c0

� �
; (1)

where c0 is the sound speed, and f ðtÞ is a dimensionless

function describing the input function.

Since all rays reflected from the reflector surface con-

verge to the focus at the same time, the relation between the

reflected pressure ðp2gÞ and the pressure on the reflector sur-

face ðp1Þ along these reflected rays can be obtained by con-

sidering the focus as a center of an imaginary converging

spherical wave. As a result, the amplitude of p2g obtained at

a distance r2 from the focal point can be described by

j p2g j r2 ¼ j p1 j rF for each ray. Combining this pressure

relation with Eq. (1), the reflected pressure field can be writ-

ten as

p2g

p0

¼ rF

r2

f t� hv þ zF � r2

c0

� �
; (2)

where ðhv þ zF � r2Þ=c0 is the time required for a sound ray

to travel from the source plane to a point located on the ray

path at a distance r2 from focus.

Equation (2) gives spatial and temporal information for

the reflected pressure field using geometrical acoustics and

describes the contribution from any point on the reflector

surface. Note that the effect of diffraction is not considered

in the geometrical acoustics analysis.

B. Kirchhoff-Helmholtz integral

The K-H integral can be used to calculate the pressure

response at a point enclosed by a closed surface when the

initial condition is known.18 Here the K-H integral is

employed to calculate the reflected pressure response along

FIG. 1. Layout of paraboloidal reflector and source plane that radiates plane

waves with a peak amplitude of p0. The dashed line shows any ray parallel

to the reflector axis passes through the focal point after reflection.
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the reflector axis which accounts for diffraction. The initial

condition (the pressure on the reflector surface and its inward

normal derivative) is described by geometrical acoustics

using Eq. (2). Given the pressure on the reflector surface

resulting from an incident plane wave, the transient model

resulting from the evaluation of the K-H integral is provided

in Eqs. (4)–(11) of this section. The details of the model der-

ivation are important and non-trivial but can obfuscate the

relevant physical details of the results. Therefore, this sec-

tion provides the model and a discussion of the components

while the full derivation is provided in Appendix A.

The reflected pressure p2 is calculated by the K-H inte-

gral as

p2 ¼
1

4p

ð ð
S

½p2g�
@

@n

1

R

� �
� 1

c0R

@R

@n

@p2g

@t

� ��

� 1

R

@p2g

@n

� ��
ds; (3)

where @=@n is the derivative in the inward direction normal

to the reflector surface, and the brackets ½�� indicate that any

time related argument presented inside the bracket is delayed

by R=c0.18

In Eq. (3), the K-H integral integrates over the entire

closed surface, which is not the case for a paraboloidal

reflector because its surface ends at the aperture. However,

since the reflected rays only come from the reflector surface,

all contributions of p2g and its normal derivative from out-

side the reflector aperture must be zero. Therefore, only part

of the integral gives a non-zero value. The pressure p2 along

the reflector axis can therefore be written as

p2

p0

¼ HeðzÞf ðseÞ þ HcðzÞf ðscÞ

þ
ðt2

t1

Hwðz; t0Þf ðt� t0Þdt0; (4)

where He, Hc; and Hw are scaling factors for different

reflected waves, s is the retarded time, and z is the vertical

location of the observation point. The limits of integration t1

and t2 correspond to the arrival times of the first and last

arrived wave, respectively.

On the right hand side of Eq. (4), the first two terms cor-

respond to the two limits (edge and center) in the K-H inte-

gral, and the last term is the contribution from the entire

surface. The first term is the edge wave representing contri-

butions to the on-axis field resulting from the edge diffrac-

tion. The second term is the center wave,14 which represents

the reflected wave from the reflector vertex. The third term

is known as the wake,19 which is due to non-uniform pres-

sure distribution on the surface. As indicated in Eq. (4), both

the center and edge waves have the same waveform as the

input wave but with different arrival times and scaling fac-

tors. The integral indicates that the wake is superposition of

waves reflected from the entire surface. The pressure ampli-

tude and phase of each type of reflected waves are deter-

mined by the corresponding scaling factors, which are

functions of the observation location z. The functions in

Eq. (4) are defined as

HeðzÞ ¼
zFðzþ hþ ReÞ

ReKe
; (5)

HcðzÞ ¼ �
zFðzþ RcÞ

RcKc
; (6)

Hwðz; t0Þ ¼ �
zFc0ðzþ zr þ RrÞsgnðKrÞ

ðzr þ zFÞK2
r

; (7)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4zFzs þ ðz� zsÞ2

q
; (8)

Ke;c;r ¼ Re;c;r þ z� zs � 2zF; (9)

s ¼ t� hv � zs þ R

c0

; (10)

and

zr ¼
ðt0c0 � hvÞ2 � z2

4zF � 2ðt0c0 � hv þ zÞ : (11)

In these expressions, the subscripts e; c; r indicate that

the functions R;K; s are evaluated at zs ¼ h (edge), zs ¼ 0

(center), and zs ¼ zr, respectively, where zr is the root of

sðzsÞ ¼ 0. The sign of K is positive for z > zF (beyond the

focus), and negative for z < zF (before the focus).

III. ON-AXIS PRESSURE RESPONSE

A. Reflected pressure response along axis for an
incident plane wave

Figure 2(a) shows an example of the reflected on-axis

pressure response calculated from a point 3 cm before the

focal point. For this example, the paraboloidal reflector has a

radius of 10 cm and a depth of 5 cm, and the focal point is

located at z ¼ 5 cm. The distance between reflector vertex

and source plane (hv) is 30 cm. A single cycle sinusoidal

wave with a period of 50 ls is used as input. The direct

wave (incident wave) is also shown for reference. In this fig-

ure, the three components (edge, center and wake) of the

reflected field are distinctly observed. Since the observation

point is located between the focal point and the reflector ver-

tex, the travel distance for the center wave to reach the ob-

servation point is shorter than that for edge wave. As a

result, the center wave arrives earlier than the edge wave.

Since the wake is reflected from the entire surface between

the center and the edge of the reflector, arrival time of the

wake spans between that of center wave and edge wave.

The center and edge waves in Fig. 2(a) have similar

waveforms as the input function but different amplitudes and

phases, respectively. The wake is formed by superposition of

many surface-reflected waves that have similar waveform

but different time delays, as indicated in Eq. (4). Compared

to the direct wave, the phase of edge wave is inverted while

the phase of center wave stays the same as input function.

This phase difference is related to the location of observation

point. Since the observation point is located between the

focal point and reflector vertex, the edge wave changes sign

when it passes through the focal point.
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Figure 2(b) shows the axial time-domain signal obtained

at 5 cm beyond the focal point. Since the travel distance for

the center wave to reach the observation point is longer than

that for the edge wave, the edge wave arrives first, followed

by the wake and the center wave. Comparing to this figure to

Fig. 2(a), both the center and edge waves change phases.

Because the observation point is now located beyond the

focal point, the center wave passes through focal point

(changes from converging to diverging) and changes sign.

The wake also changes sign as indicated in Eq. (7).

B. Response at focus with plane wave incident

Figure 2(c) shows the focused pressure response at the

focal point. Due to singularity of function K in Eqs. (5)–(7)

at z ¼ zF, the pressure at the focal point must be obtained

separately. The procedure is presented in Appendix B. After

substituting z ¼ zF into Eq. (A13) and convolving the

impulse response with the input function, f ðtÞ, the focused

pressure response can be written as

p2

p0

¼ 2zFlnðh=zF þ 1Þ
c0

d

dt
f t� hþ zF

c0

� �
; (12)

where h is the depth of reflector. Eq. (12) indicates that the

pressure waveform at the focus has a shape of the derivative

of the input function, which is shown in Fig. 2(c). Note that

the signal gain factor is determined by geometry of the pa-

raboloidal reflector and the frequency contents of the inci-

dent wave. Detailed analysis of that observation is presented

in Sec. V.

IV. NUMERICAL VERIFICATION

A. Numerical analysis: Model description

In this section, the on-axis analytical solution for a pa-

raboloidal reflector is validated by numerical simulation

using the finite element method (FEM) in ABAQUS/Explicit

with a 2D axisymmetric model. ABAQUS/Explicit utilizes

the explicit Newmark scheme, which employs the central

difference method for direct time integration and is widely

used for simulating elastic wave propagation problems.20

Figure 3(a) shows the model used to simulate an airborne

incident plane wave and the paraboloidal reflector. The 2D

axisymmetric model consists of two domains: an aluminum

paraboloidal reflector and an air section. Properties of air are

q ¼ 1:21 kg/m3, c0 ¼ 343 m/s, and those of the aluminum

reflector are q ¼ 2700 kg/m3, E ¼ 71 GPa, and � ¼ 0:33.

The dimension used in the air domain is 30 cm by 30 cm to

simulate a cylinder of air having a radius of 30 cm and a

height of 30 cm. The vertex of the aluminum paraboloidal

reflector is 20 cm above the bottom boundary of the air sec-

tion. The reflector has a thickness of 2 mm and a radius of

8 cm. The focal point is located 3.1 cm from reflector vertex.

The air and aluminum reflector domains are simulated as

having a perfect fluid�solid interaction by assuming conti-

nuity of pressure and normal displacement across their inter-

face. A single cycle sinusoidal wave [Fig. 3(b)] with a

period of T is used as an input function and is specified over

the bottom surface (source plane) of the air domain.

The mesh size used in the air section is selected based

on the wavelength of the airborne wave. To properly simu-

late a propagating wave, a mesh size smaller than 1/10 of the

smallest wavelength is required. This criterion indicates the

propagating wave should be described by more than 10

nodes.21–23 The smallest wavelength in air is 17 mm for

T¼ 50 ls. To insure accurate results, a mesh size of 0.5 mm

FIG. 2. On-axis time-domain signals at (a) 3 cm before focus (z¼ 2 cm), (b)

5 cm beyond focus (z¼ 10 cm), and (c) focus (z¼ 5 cm). The edge wave in

(a) and the center wave in (b) have inversed phase compared to the input

signal. The waveform at the focus is the derivative of the input function.

FIG. 3. (a) Model used in ABAQUS for FEM simulation, (b) input function

as a single-cycle sinusoid with a duration of T.
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(k=34) was used for the air domain. The mesh size used in

the aluminum reflector is 0.5 mm to match the nodes in the

air section. Triangular linear axisymmetric acoustic elements

(ACAX3) were used in the air section, and triangular linear

axisymmetric solid elements (CAX3) were used in the

paraboloidal reflector.

B. FEM analysis: Simulation results

1. Wave field visualization

Four snapshot pictures for the wave fields in air obtained

at different times are shown in Fig. 4 for a single cycle sinu-

soidal pulse with duration of 50 ls. Note that the FEM

model is 2D axisymmetric, and each image shown in Fig. 4

consists of an original image (right-half) and its mirror

image (left-half). The axis of symmetry lies vertically in the

middle of each figure. The combined images are truncated

and only the portions that efficiently demonstrate the wave

phenomenon of interest are presented. The figures visualize

the incident plane wave and the reflected/diffracted waves

including center wave, wake, and edge wave. The white

arrows indicate the direction of propagation for the airborne

waves.

Figure 4(a) shows a plane wave propagating toward the

paraboloidal reflector at t ¼ 250 ls. This incident wave cor-

responds to the direct wave shown in Fig. 2. Figure 4(b)

shows the wake and edge wave reflected from the paraboloi-

dal reflector at t ¼ 550 ls. A spherical wavefront (dashed

line) is observed with its center located at the reflector edge.

Since the model is axisymmetric, the edge wave would be a

doughnut-shaped wavefront in a 3D space. As predicted in

Fig. 2(b), the edge wave has the same phase as the incident

plane wave before passing through focal point (z > zF). The

wake is not clearly shown in this figure given that its

amplitude is relatively weak. However, wave interference on

the interior reflector surface indicates the presence of wake

and demonstrates the interaction between the wake and the

edge wave. Figure 4(c) shows the moment before focusing

occurs when all waves converge toward the focal point. The

center wave has been radiated from the vertex of the reflec-

tor but can hardly be identified because of the wave interfer-

ence. Figure 4(d) demonstrates a clear center wave at

t ¼ 900 ls with its phase opposite to the incident plane wave

after passing through the focal point.

2. On-axis signal comparison

Simulated signals along the reflector axis at z ¼ 2, 4, 6,

and 8 cm are shown in Fig. 5. These signals were obtained

using both analytical and numerical models. A longer period

of the sinusoidal function (T¼ 150 ls) was used to minimize

energy dissipation of waves during propagation induced by

meshing. Given T¼ 150 ls, the calculated ka (Ref. 17) at

the center frequency of the input function is 7.85, which is

sufficiently larger than one to fulfill the frequency require-

ment for geometrical acoustics. Signals in Fig. 5 show agree-

ment between the analytical and FEM results for arrival

times and pressure amplitudes. However, as the observation

point moves further beyond the focal point (z ¼ 6 cm, 8 cm),

discrepancy is observed. The wave amplitudes of simulation

results are smaller than that given by the analytical results. A

possible explanation for this discrepancy may be mesh

damping induced by the FEM model. In finite element analy-

sis, the mesh acts like a low-pass filter and dissipates energy

of propagating waves.23 Therefore, as the waves propagate

further, more energy is dissipated and the its pressure ampli-

tude decreases accordingly, as shown in Figs. 5(c) and 5(d).

FEM simulation results presented in this section has

validated the analytical solution. This axial solution captures

the behavior of each wave and gives correct on-axis

response. In Sec. V, this analytical solution is used to

FIG. 4. (Color online) Visualization of the wave field in air at (a) t¼ 250 ls,

(b) t¼ 550 ls, (c) t¼ 650 ls; and (d) t¼ 900 ls. The input plane wave has a

waveform of an one-cycle sinusoid with a period of 50 ls.

FIG. 5. (Color online) Analytical and simulation results along axis at (a)

z ¼ 2 cm, (b) z ¼ 4 cm, (c) z ¼ 6 cm, (d) z ¼ 8 cm. The focal point is at z
¼ 3:1 cm. The direct wave is included for reference. The disturbances in nu-

merical results at late time are caused by reflection from the model

boundary.
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investigate the focusing effect provided by reflectors with

various geometries. In addition, pressure responses in the

focal zone is also studied.

V. INVESTIGATION OF FOCUSING EFFECT

The geometry of a paraboloidal reflector can be

described by the equation r2 ¼ 4zFz. However, this equation

does not express the characteristics of a parabola intuitively.

Other systems, such as the rim angle or h=zF for a fixed

reflector aperture shown in Fig. 6(a) are widely used and

give an intuitive expression of the reflector dimensions. Rim

angle (h) is defined as the angle between reflector axis and

the line connecting the focal point and the reflector edge. For

a paraboloidal reflector with a rim angle of 908, the focal

point is located at the center of the aperture. Figure 6(b)

shows nine parabolas with different rim angles from 308 to

1508 with a 158 increment. In this figure, these parabolas are

presented in such a way that their focal points are fixed at

the point r ¼ z ¼ 0 while the depth changes. Both the rim

angle h and h=zF are used in this paper to describe the geo-

metries of paraboloidal reflectors, and they are related to

each other by equation

h

zF
¼ 1� cosh

1þ cosh
: (13)

A. Dependence of focusing gain on reflector geometry

Equation (12) shows that the signal amplification

(p2=p0) at the focal point is related to the reflector geometry

and time derivative of the input function (df=dt). The effect

of reflector geometry is presented in this section. For a given

input function, the pressure gain at the focus is related to the

reflector geometry by

p2

p0

/ zF lnðh=zF þ 1Þ ¼ zFG1; (14)

or in another form

p2

p0

/ r
ffiffiffiffiffiffiffiffiffi
zF=h

p
lnðh=zF þ 1Þ ¼ rG2: (15)

G1 is the gain factor associated with paraboloidal reflec-

tors with a fixed focal length zF, and G2 is the gain factor

associated with paraboloidal reflectors with a fixed aperture

radius r. Figure 7(a) shows the relation between G1 and h=zF.

For paraboloidal reflectors with the same focal length zF,

increasing h=zF indicates extension of the paraboloidal reflec-

tor in the depth direction, and the aperture area of reflector

(pr2 ¼ 4pzFh) also increases linearly with h. In this case, the

aperture of the reflector increases and more sound energy is

collected and focused. Based on geometrical acoustics without

considering diffraction, the pressure at the focus will increase

linearly with the radius r, or
ffiffiffi
h
p

. However, Eq. (14) shows

the gain factor G1 increases with h=zF as function

lnðh=zF þ 1Þ, when diffraction is considered.

If the radius of a paraboloidal reflector is fixed, the same

amount of incident energy is considered. In this case, the

pressure at the focus is affected by the geometry of reflector.

Figure 7(b) shows the relation between G2 and h=zF. It can

be seen that the maximum gain is obtained around h=zF ¼ 4.

Derivation in Appendix C shows the maximum gain occurs

at h=zF ¼ 3:92. This result agrees with the analysis by

Wahlstrom,13 who provided a frequency domain solution

analogous to the transient solution provided here. Figure

8(a) shows the gain factor G2 normalized by the maximum

value obtained at h=zF ¼ 3:92 (h ¼ 126:48), and the ratio is

shown as decibels. To show comparison with results by

Wahlstrom,13 the horizontal axis label h=zF various as the

power of 2. Corresponding rim angle values are also shown

on the top axis. Both models give identical results and pre-

dict a maximum gain at h=zF ’ 4 or rim angle ’ 126:98.
Therefore, the most efficient reflector geometry for signal

amplification is determined. However, for h=zF in the range

of 1� 16 or rim angles from 908 to 1508, the reflectors can

also be considered efficient since the gain factor drops only

about 1 dB.

The variation of gain factor G2 can be understood from

the change of travel distances for the edge wave, center, and

wake waves. For different reflector geometries (same aper-

ture size), the travel distance for each type of wave from the

reflector surface to the focal point is different, as shown in

Fig. 6(b). For example, the waves reflected from a reflector

of a rim angle of 308 need to travel longer distances to reach

the focal point compared that reflected from a reflector of

rim angle of 908. Since the pressure amplitude of a reflected

wave decays as it propagates (geometrical spreading), the

focused pressure amplitude for 308 rim angle is smaller.

FIG. 6. (Color online) Two systems for describing geometry of a paraboloi-

dal reflector: (a) rim angle and h/zF with a fixed aperture radius, (b) parabo-

loidal reflectors with different rim angles ranging from 308 to 1508.
FIG. 7. Relation between gain factor and different paraboloidal reflectors

with (a) a fixed focal length zF and (b) a fixed reflector radius r.
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When the rim angle reaches 1208, the focused pressure

reaches the maximum.

B. Dependence of focusing gain on frequency of
incident wave

The pressure amplification at focus also depends on the

frequency of incident wave. By transforming Eq. (12) into

frequency domain, the pressure gain can be written as

p2ðxÞ
p0

¼ 2jk0zF lnðh=zF þ 1ÞFðxÞ; (16)

where k0 ¼ x=c0 ¼ 2p=k is the wavenumber of the inci-

dent wave and FðxÞ is the Fourier transform of f ðtÞ. This

equation indicates that signal amplification at the focus is

linearly proportional to the frequency x or zF=k of the inci-

dent wave. Figure 8(b) shows the combined effect of

reflector geometry h=zF and frequency zF=k on the focused

signal amplification in decibels. This figure agrees with the

results derived by Wahlstrom13 based on harmonic solu-

tions. It should be noted that, however, this conclusion is

based on an assumption of ka� 1. If the requirement is

not satisfied, standing wave can be formed from the inter-

action between the incident wave and the reflected

waves,13 which reduces the signal amplification at focus.

C. Relation between rim angle and on-axis
focusing gain

On-axis signal amplification provided by paraboloidal

reflectors with different rim angles is studied in this section.

The investigated rim angles range from 308 to 1508 with a

308 increment, and the corresponding paraboloidal reflectors

shown in Fig. 6(b) are used here. The input function is a sin-

gle cycle sinusoidal tone burst, and two input frequencies,

20 and 100 kHz, are used to investigate the dependence of

on-axis focusing gain on the input frequency.

Figures 9(a) and 9(b) show the near-focus signal ampli-

fication along the reflector axis for different rim angles, and

two input frequencies of 20 and 100 kHz, respectively. Note

that the horizontal axis represents the offset distance from

the focus, and ranges from �4 cm (before focus) to þ4 cm

(beyond focus). For a paraboloidal reflector with a large rim

angle (1208 a 1508, for example), because the focal point is

very close to the reflector vertex, only limited number of

results can be obtained in the region between focal point and

vertex.

In both figures, the signal amplification reaches the

maximum at the focal point and drops elsewhere. In the near

focus region, the 100 kHz wave gives higher signal amplifi-

cation than the 20 kHz wave. However, the sizes of focal

zone in two figures are different, and they depend on both

the rim angle and the input frequency. First, a small rim

angle of 308 gives a relatively flat amplification curve in

both figures while a large rim angle of 1208 gives a much

sharper one. The focal zone narrows as the rim angle

increases from 308 to 1208 and then widens as the rim angle

keeps increasing to 1508. This result indicates that a reflector

that provides higher focusing gain has a narrower focal zone

and vice versa. Second, the input frequency affects the focal

zone size. The amplification curve for each rim angle in Fig.

9(b) is much sharper than the corresponding curve in Fig.

9(a). In addition, the signal amplification drops much faster

in Fig. 9(b) as the observation point moves away from the

focal point. This indicates that a higher input frequency has

a narrower focal zone.

The variations of on-axis signal amplification (off-

focus) and the focal zone size are related to the arrival times

and frequencies of the reflected wave. Figure 10 shows the

time domain signals obtained at 2 cm beyond focus for rim

angles of 308, 608, 120�, and 1508. The input plane wave is a

single cycle sinusoidal pulse with an input frequency of

20 kHz. For small rim angles (30� and 60�), the reflected

waves arrive almost simultaneously and result in high

constructive interference. The resulting waves shown in

Figs. 10(a) and 10(b) are quite similar to the signal obtained

at focus, and they can still be considered as focused waves

but with lower amplitudes (slightly defocused). However,

for large rim angles (120�and 150�), it is clear that the three

reflected waves (center, edge, and wake) arrive at different

times and thus there is very limited constructive interference.

Therefore a small rim angle gives a wide focal zone while a

large rim angle gives a narrow focal zone. Arrival times of

the center wave, edge waves, and wake are related to their

travel paths. As can be seen in Fig. 6(b), the distance

between the reflector surface and the focal point is large for

the reflector with rim angle of 308. Therefore, a 2 cm shift

from the focal point along axis introduces a relatively small

FIG. 8. (Color online) (a) Normalized signal amplification with respect to

G2max at h/zF¼ 3.92, (b) signal amplification for incident waves with differ-

ent frequencies (h=k) and paraboloidal reflectors with various geometries

(h=zF).

FIG. 9. (Color online) Axial signal amplification (near-focus region) given

by paraboloidal reflectors with the same aperture radius 10 cm but different

rim angles. Results from two input frequencies: (a) 20 kHz and (b) 100 kHz

are presented. The focal point corresponds zero offset on the horizontal axis.
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amount of extra travel distance for the center, edge, and

wake waves. As a result, their travel times to focus are elon-

gated by about the same amount and the resulting wave has

a shape similar to the signal obtained at focus. For larger rim

angle like 1208 or 1508, the focal lengths are about 2.5 and

1.25 cm, respectively. A 2 cm shift from focal point introdu-

ces considerably amount of extra distance compared to the

original travel path, therefore their arrival times are much

different as shown in Figs. 10(c) and 10(d) and result in less

constructive interference. A high frequency incident wave

with short wavelength has less chance to build constructive

interference than a low frequency wave. Therefore, a higher

frequency incident wave has a narrower focal zone.

VI. INCIDENT WAVES WITH ARBITRARY
AXISYMMETRICAL WAVEFRONT

The analytical solution given by Eq. (4) can be extended

to incident waves with non-planar, non-uniform axisymmetric

wavefront. The entire paraboloidal reflector can be divided

into a finite number of rings, and each ring is assigned a spe-

cific input waveform. Given the axisymmetric model in Fig.

1, the radial distance, r, is used to describe any ring (with ra-

dius r) on the paraboloidal reflector as well as its projection (a

source ring with same radius r) on the source plane.

According to geometrical acoustics, the rays emitted from the

source ring would be reflected solely by the corresponding

ring (with the same radius r) on the reflector surface. In addi-

tion, the required arrival time for the rays to reach the obser-

vation point other than the focal point has a unique value

between t1 and t2. As a result, each arrival time (t0) in the inte-

gral of the wake term in Eq. (4) can be related exclusively to

its corresponding source ring with a radius of r. With this dis-

cretization procedure, the rays emitted from the source rings

with different radius r can be considered individually in the

wake integral. For the edge and the center waves, the corre-

sponding input functions can be directly included in the first

two terms in Eq. (4).

An axisymmetric wavefront can be achieved by assign-

ing different input functions along r on the source plane.

Figure 11(a) shows an example for an incident conical wave.

Extra delay times, text, are included at the beginning of each

input functions and are determined by the inclined angle,

hinc, using the relation text ¼ rtanðhincÞ. Figure 11(b) shows

the FEM model. A paraboloidal reflector with a radius of

8 cm and a depth of 5 cm is used. The focal length is 3.1 cm,

and hv is 10 cm. An one-cycle sinusoid with a period of

150 ls is specified along the inclined face as input. Figures

11(c) and 11(d) show the on-axis responses obtained at 2

and 6 cm from reflector vertex, and the inclined angles of the

simulated conical wavefront is 38. The analytical and simula-

tion results in Fig. 11 show good agreement in the region

away from the focal zone. Since the incident wave is not pla-

nar, the focal point shifts.

VII. CONCLUSIONS AND FUTURE WORK

A transient solution has been derived for the axial

response of reflected plane waves from a paraboloidal reflec-

tor. This solution provides an impulse response of the sys-

tem, and the response to any transient input can be obtained

by convolution. Numerical simulations using FEM are per-

formed to visualize the wave field in air and validate the ana-

lytical solution. Numerical simulations also provide a better

understanding about how the reflected waves propagate and

interfere with each other.

The analytical solution shows that the axial response

consists of three components: The center wave, edge wave,

and wake. These three waves are generated from the reflec-

tor’s center, edge, and entire surface, respectively, and their

arrival times, amplitudes, and phases vary with the location

of the observation point. For incident plane waves, all waves

arrive at the focal point of the reflector at the same time,

therefore their constructive interference is maximized. The

resulting focused wave has a waveform of the time-

derivative of the input function and has the maximum pres-

sure amplitude on the axis.

FIG. 10. Time-domain signals obtained at 2 cm beyond focal point given by

rim angle of (a) 308, (b) 608, (c) 1208, (d) 1508.

FIG. 11. (Color online) (a) Conceptual model for an incident wave with a

conical shape. Extra delay times are added to the input functions to form a

conical wavefront. (b) Model for FEM simulation. (c) and (d) Analytical

and simulation results obtained at z¼ 2 cm and z¼ 6 cm along the axis given

by conical waves with an inclined angle of 38.
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Dependence of focusing gain on reflector geometry and

input frequency was studied. For a fixed input frequency, the

focusing gain reaches maximum when the rim angle ’ 126:48
(h=zF ¼ 3:92). For high frequency waves satisfying the

requirement of ka� 1, the focused pressure amplitude varies

linearly with the input frequency. As a result, plotting the fo-

cusing gain against reflector geometry and input frequency in

decibels results in a family of straight lines parallel to each

other as shown in Fig. 8(b). Reflector geometry and input fre-

quency also affect the size of focal zone. The size of focal

zone is wider for smaller rim angle or lower input frequency,

and becomes sharper as the rim angle approaches 126:48 or

with higher input frequency. Trade-off between the focusing

gain and the size of focal zone is presented and can serve as a

guideline for selecting appropriate paraboloidal reflector.

The analytical solution is extended to analysis of inci-

dent waves with axisymmetric wavefronts by using a discre-

tization procedure. An example of an incident conical wave

is presented and the analytical and simulation results agree

well in the region away from focal point. Since the incident

wave is not planar, focal shift occurs and the phase reversal

behavior of each reflected wave in the near-focus region is

different. Behavior of phase reversal for an incident wave

with arbitrary wavefront will be studied in the future. The

discretized solution also allows a non-uniform pressure dis-

tribution of the incident wave. This analytical solution will

be generalized to account for incident waves with any axi-

symmetric wavefront and pressure distribution in the future.
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APPENDIX A: DERIVATION OF ON-AXIS SOLUTION

The following derivation of the transient on-axis pres-

sure field reflected by a paraboloidal reflector follows the

procedure used by Hamilton14 for obtaining the on-axis solu-

tion resulting from a point source located at the near focus of

an ellipsoidal reflector. Before evaluating the on-axis

response from a paraboloidal reflector, we note that the pres-

sure on the reflector surface p2g based on the geometrical

acoustics [Eq. (2)] can be represented by a convolution of

the impulse response function, h2g, and any arbitrary tran-

sient input function f ðtÞ as p2g=p0 ¼ f ðtÞ � h2g, where

h2g ¼
DðzsÞ

r2

d t� hv þ zF � r2

c0

� �
; and (A1)

DðzsÞ � rF ¼ zs þ zF: (A2)

The function h2g is found by simply setting the function

f ðtÞ in Eq. (2) to the delta function, dðtÞ. The term DðzsÞ
defined on the left-hand side of the above expression is the

paraboloidal analog to the directivity factor used by

Hamilton for ellipsoidal reflectors. It is introduced to

simplify the determination of the Q factor [Eq. (A15)] used

in finding the contributions by the center, edge, and wake to

the field on-axis.

Using this expression, the Kirchhoff-Helmholtz integral

shown in Eq. (3) now be represented by the impulse response

h2 as p2=p0 ¼ f ðtÞ � h2, where

h2 ¼
1

4p

ð ð
S

½h2g�
@

@n

1

R

� �
� 1

c0R

@R

@n

@h2g

@t

� ��

� 1

R

@h2g

@n

� ��
ds: (A3)

To evaluate h2, each of the terms within the integral must

be evaluated in terms of the paraboloidal geometry. We begin

with the normal derivative of R on the reflecting surface,

@R

@n
¼
~R �~en

R
; (A4)

where R is the distance between any point on the reflector

surface and the observation point on the z axis, and ~R is its

vector form pointing from the on-axis observation point to

the reflector surface. ~en is a unit vector pointing to the

inward normal direction of the reflector surface (~n). ~R is thus

defined by

~R ¼ ðzs � zÞ~ez þ r~er: (A5)

The equation of the reflector surface ðCÞ can be written

as

Cðr; zsÞ ¼ r2 � 4zFzs ¼ 0; (A6)

and~en is therefore given by

~en ¼
�rs � C
jrsCj

¼ �
ffiffiffiffiffiffiffiffiffiffi
zs=zF

p
~er þ~ezffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zs=zF þ 1
p ; (A7)

where rs is the gradient evaluated on the surface of the

reflector. Substituting the above terms into Eq. (A4), one

obtains the following simple relationship for @R=@n;

@R

@n
¼ �ðzþ zsÞ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zs=zF þ 1

p :

Using these expressions, the first term in the integrand

of h2 [Eq. (A3)] can now be determined. The notation fgs

indicates that the terms within the brackets are evaluated on

the reflector surface, which implies, for example, that r2 be

replaced with rF within the integrand. As a result,

½h2g�
@

@n

1

R

� �� �
S

¼ � ½h2g�
R2

@R

@n

� �
S

¼ DðzsÞðzþ zsÞ
R3rF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zs=zF þ 1

p dðsÞ; (A8)
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where s is the retarded time, which is defined as

s ¼ t� hv � zs þ R

c0

: (A9)

Similarly, the second term in the integrand of Eq. (A3)

becomes

� 1

c0R

@R

@n

@h2g

@t

� �� �
S

¼ DðzsÞðzþ zsÞ
c0R2rF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zs=zF þ 1

p @dðsÞ
@s

;

(A10)

and the last term is

� 1

R

@h2g

@n

� �� �
S

¼ DðzsÞ
rf R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zs=zF þ 1

p @dðsÞ=@s
c0

� dðsÞ
rF

� �
:

(A11)

Note that the surface area of the paraboloidal reflector

ðdsÞ in the integral can be represented with dzs as

ds ¼ 4pzF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zs=zF

p
dzs: (A12)

Employing all the above expressions, h2 can finally be

written as an integration along zs as

h2 ¼ zF

ðh

0

zþ zs

R2
� 1

rF

� �
dðsÞ

�

þ zþ zs

c0R
þ 1

c0

� �
@dðsÞ
@s

�
DðzsÞ
Rrf

dzs: (A13)

The integrand in Eq. (A13) can be written as a form

of integration by parts as d½QðzsÞdðsÞ�=dzs by carefully

choosing the function Q. Analysis shows that the Q
function can be defined using the second term in Eq. (A13)

as

1

Rrf

zþ zs

c0R
þ 1

c0

� �
@dðsÞ
@s
� Q

@dðsÞ
@s

@s
@zs

; (A14)

which results in

Q ¼ zþ zs þ R

Rrf K
; and (A15)

K ¼ Rþ z� zs � 2zF ¼ Rþ z� zF � rF: (A16)

One then notes that the spatial derivative of Q with

respect to the z coordinate on the surface is found as

@Q

@zs
¼ zþ zs

R2
� 1

rF

� �
1

Rrf
; (A17)

which allows Eq. (A13) to be rewritten as

h2 ¼ zF

ðh

0

DðzsÞ
d

dzs
½QðzsÞdðsÞ�dzs: (A18)

Equation (A18) can then be integrated by parts to yield

the following function for h2;

h2 ¼ zFDðhÞQðhÞdðseÞ � zFDð0ÞQð0ÞdðscÞ

� zF

ðh

0

D0ðzsÞQðzsÞdðsÞdzs: (A19)

The delta function in Eq. (A19) is given by

d½sðzsÞ� ¼
dðzs � zrÞ
js0ðzrÞj

; (A20)

where s0 � @s=@zs and zr is the root of sðzrÞ ¼ 0. Now one

notes that s0 is

@s
@zs
¼ 1

c0

1� @R

@zs

� �
; (A21)

and that R2 ¼ 4zFzs þ ðz� zsÞ2, @s=@zs can thus be written

as

@s
@zs
¼ Rþ z� zF � rF

Rc0

¼ K

Rc0

: (A22)

K is a function of z and zs. According to the reflector ge-

ometry shown in Fig. 1, K is positive for an observation

point located beyond the focus (z > zF) and negative for a

point located before the focus (z < zF). The delta function is

therefore

dðsÞ ¼ Rrc0sgnðKrÞ
Kr

dðzs � zrÞ; (A23)

with zr given by

zr ¼
ðtc0 � hvÞ2 � z2

4zF � 2ðtc0 � hv þ zÞ : (A24)

Substituting dðsÞ into Eq. (A19), h2 can be rewritten in

the compact form

h2 ¼
zFðzþ hþ ReÞ

ReKe
dðseÞ �

zFðzþ RcÞ
RcKc

dðscÞ

� zFc0ðzþ zr þ RrÞsgnðKrÞ
ðzr þ zFÞK2

r

� HeðzÞdðseÞ þ HcðzÞdðscÞ þ Hwðz; tÞ: (A25)

The subscripts e; c; r indicate that the functions R and K
will be evaluated at the edge (zs ¼ h), center (zs ¼ 0), and on

the surface (zs ¼ zr). As a result, p2 can be calculated from

three terms representing the edge, center, and wake contribu-

tions, respectively:
p2

p0

¼ f ðtÞ � h2ðz; tÞ

¼ HeðzÞf ðseÞ þ HcðzÞf ðscÞ þ
ðt2

t1

Hwðz; t0Þf ðt� t0Þdt0:

(A26)

In the above expression, t1 and t2 are the temporal limits

of the wake defined by Eq. (A27) or Eq. (A28) depending on

the z coordinate of the observation point. For z < zF, the
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leading contribution of the wake arrives from the reflector

center while the contribution arriving from reflector edge

arrives last. In that case, t1 and t2 are written as

t1 ¼
hv þ z

c0

and t2 ¼
hv � hþ Re

c0

: (A27)

On the contrary, for z > zF,

t1 ¼
hv � hþ Re

c0

and t2 ¼
hv þ z

c0

: (A28)

Note that a singularity occurs when the observation is

located at the geometric focus. A special solution for pres-

sure response at focal point is given in Appendix B.

APPENDIX B: SOLUTION AT GEOMETRIC FOCUS

The solution for axial response given in Appendix A has

a singularity when the observation point coincides with the

focal point. A special solution is therefore presented here for

that special point of interest. By setting z ¼ zF, Eq. (A13)

can be written as

h2 ¼
2zF

c0

@dðsÞ
@s

ðh

0

1

rF
dzs ¼

2zFlnðh=zF þ 1Þ
c0

@dðsÞ
@s

:

(B1)

Then, since @s=@t ¼ 1 in this case, and the chain rule

yields

@dðsÞ
@s
¼ @dðsÞ

@s
@s
@t
¼ @dðsÞ

@t
;

the expression for h2 simplifies to

h2 ¼
2zFlnðh=zF þ 1Þ

c0

@dðsÞ
@t

; (B2)

and thus the pressure at any on-axis observation point is

given in the following compact form

p2

p0

¼ h2 � f ðtÞ (B3)

¼ 2zFlnðh=zF þ 1Þ
c0

d

dt
f t� hþ zF

c0

� �
: (B4)

APPENDIX C: CRITICAL VALUE OF G2 FOR MAXIMUM
SIGNAL AMPLIFICATION

To investigate the influence of reflector geometry on

gain at the reflector focus, Sec. V A introduced a gain factor,

G2 given in Eq. (15). By replacing h=zF with x, in that

expression, one has

G2 ¼
ffiffiffiffiffiffiffi
1=x

p
lnðxþ 1Þ; (C1)

an expression that can then be used to determine the value of

h=zF that maximized the focusing gain for a given input

function. This is done by setting @G2=@x equal to zero,

@G2

@x
¼

ffiffiffi
x
p
=ðxþ 1Þ � lnðxþ 1Þ=2

ffiffiffi
x
p

x
¼ 0; (C2)

and finding the root. The above equation can be simplified

as

2x

xþ 1
¼ lnðxþ 1Þ: (C3)

Equation (C3) does not have an analytical solution, but

numerical root finding shows that a maximum for G2 occurs

when x ¼ h=zF ’ 3:92, which corresponds to a rim angle of

’ 126:48.
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