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The analysis of acoustic waves generated by a transient normal point load applied on a fluid—solid
interface is presented. The closed-form exact solution of the wave motion is obtained by using
integral transform techniques. The obtained analytical solution provides necessary theoretical
background for optimization of fluid-coupled ultrasonic and acoustic wave detection in experiments.
Numerical simulation(elastodynamic finite integration techniquies performed to verify the
obtained analytical solution. Detailed descriptions of leaky Rayleigh and Scholte wave solutions are
presented. A simplified solution to isolate the contributions of leaky Rayleigh and Scholte waves
generated by a transient point load is proposed, and closed-form formulations for displacement and
stress components are then presented. The simplified solution is compared to the exact solution for
two configurations: water/concrete and air/concrete. The excitation effectiveness of leaky Rayleigh
waves for the air/concrete configuration is studied, which has practical significance to air-coupled
sensing in civil engineering structures. @04 Acoustical Society of America.
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I. INTRODUCTION tally by Glorieux et al. (2001). The propagation of leaky
Rayleigh waves under the influences of viscous damping and
The propagating leaky Rayleigh wave that emanategeat conduction at the fluid—solid interface was studied by
from a fluid—solid interface has been used as an effectivg)j (1994, who concluded that the effect of viscosity can be
means for surface and subsurface defect detection. With rereglected for fluids with Reynolds number larger than 2500.
cent improvements in instrumentation, air-coupled transducFor common fluids such as water and air at normal driving
ers have been used for detection of leaky surf@teiet al,  frequencies <10 MHz), the viscous effect of the fluid can
2001 and leaky guided wave€astaing®t al, 200). With  pe neglected because the Reynolds numbers are far above the
the advantage of noncontact sensing, air-coupled transducesftical value of 2500.
provide an opportunity for quick scanning and imaging of  The response of leaky waves owing to transient point
large civil engineering structures by detecting the leaky Raytoading is of great practical interest to nondestructive evalu-
leigh wave. Therefore, detailed study of leaky surface waveation (NDE) researchers, especially in civil engineering,
for this case is needed. where an impulse hammer or a point impactor applied to the
Extensive studies and applications of leaky surfacesurface of the solid is often used as a transient wave source.
waves have been reported during the past 40 years. A conGusevet al. (1996 provided detailed theoretical analyses of
prehensive study of Rayleigh waves and leaky Rayleighaser-induced wave motions at the fluid—solid interface,
waves has been given by Viktor@¥967), where leaky Ray- which include Scholte, leaky Rayleigh, and lateral waves.
leigh waves at the interfaces of a solid half-space with both &eneral solutions for interface wave motion were given us-
fluid layer and a fluid half-space were investigated in greaing a 2-D formulation. 2-D and 3-D analytical solutions for a
detail. Leaky Rayleigh waves propagate with a velocityfluid—solid configuration subjected to implosive line and
slightly higher than the ordinary Rayleigh wave, and attenupoint sources in the fluid have been given by de Hebagl.
ate more intensively with distance due to continuous energy1983, 1984. However, for the case of the “Lamb” problem
radiation into the fluid. It was initially believed that the leaky in fluid—solid configuration, where a normal transient point
Rayleigh wave exists when the fluid wave velocity is  load is applied at the fluid—solid interface, no closed-form
smaller than the leaky Rayleigh wave velocttyg. How- exact solution has been reported so far.
ever, Mozhaev and Weihnacli2002 showed the actual In this paper, Laplace and Hankel integral transforms are
threshold phase velocity for leaky Rayleigh wave existencemployed to derive the full analytical solution to the
was 1.45% lower than the acoustic wave velocity of the‘Lamb” problem in a fluid—solid half-space system, where a
fluid. The character and existence conditions of leaky Raypoint load, varying with time as a step function, is applied at
leigh and Scholte waves were also investigated experimenhe interface. The obtained step response solution is shown in
integral format, which can be calculated numerically. Im-
“Author to whom correspondence should be addressed. Electronic maiPUlSe responses are then obtained by differentiating the step
johnpop@uiuc.edu responses. Therefore, for any transient impact loading that
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where the subscripts 1 and 2 represent quantities related to
the fluid and solid, respectively.

B. Continuity and initial condition

A point load is applied at the origin as a Dirac delta
function in space and varies as a Heaviside step function in
FIG. 1. A transient point load applied at the interface of a fluid—solid half- time, which can be expressed @dH(t) 5(r)/2zr. Because
space system. ideal fluid and shear-free interface conditions are assumed,
only the normal stress and vertical component of the dis-

has arbitrary temporal variation and spatial distribution, thé®/@cément are continuous at the interface. The continuity
responses can be obtained by convolving the impulse réconditions az=0 are

sponse in time and space domains. The obtained analytical Wi =Wy,

solutions are verified by EFITelastodynamic finite integra-

tion technique numerical simulation, which is a powerful S(r) (1)

tool for elastodynamic wave field analysis. Then a simplified 722~ Tza* (= Q)H(1) 5 P~ QH(Y) omr’ G
analytical formulation for the pressure field in the fluid is

derived and illustrated. Taro=Tzr1=0,

where 7,, and 7,, are the normal and shear components of
stress, and P the pressure in the fluid.

Il. COMPLETE FORMULATION Assuming the system is at rest priortte 0, we have

Consider a fluid—solid half-space system as shown in

Fig. 1. The solid half-space is given lay- 0, and the fluid by ¢1(r,2,0)=¢4(r,2,0)

z<0. The properties of the fluid are given by the Laoua- =@,(r,2,00= ,(r,z,0)
stanth; and mass density,, and those of the solid by the .
Lameconstants\, and « and densityp,. The interface be- = o(r,2,00= ¢f(r,2,00=0. (4)

tween the fluid and solid half-space is subjected to a normal

point load of magnitud€H(t), whereH(t) is the Heaviside C. Integral transform

Sfrf)e?;?ggobn. tlarfecalcj)?net :ggc;’\/gv:xrizﬁnosn ::r;:irﬂzufb‘zz? ztic;“d One-sided Laplace and Hankel transforms are used to
9 y P y Sy . obtain solutions to the equations. The Laplace athdorder

axis, cylindrical coordinates are employed, where the origlr]_|anke| transforms are defined respectively as
is located at the load point on the interface.

A. Fluid—solid half-space f(p):f f(t)e_p‘dt, an(g):f f(r)J,(ér)rdr, (5)
Introducing displacement potential functiogsg in the ° 0

fluid and ¢, and ¢ in the solid, the governing equations for wherep andé are variables of the Laplace and Hankel trans-

the fluid and the solid half-spaces are forms, respectively.

Applying the Laplace transform to E¢l) with respect

2 2
Fer 1der Fer 1. to time t and the zeroth- and first-order Hankel transform

:_2(.Plv

a2 r oo 972 ¢ with respect to the radial distanceyields
—H

(?Z(PZ + l @ 0’)2@2 = i o (1) dz(plo 2_HO_O

o2 T o 572 G2 2 9z T

Py 1oy Py ¢ 1. g2aHo — )

RS T S ®2 2—Ho_ doy™ 2 Hi_

o T o2 1?2l 4z %2 =0 — o BYT=0,
wherecg=\,/p, is the acoustic wave velocity in the fluid, where

andc3=(\,+2u)/p, andci=ul/p, are the P- and S-wave
velocities in the solid. The double dots represent a double — a2=¢2+s2p?,  as=¢2+s5p%,  B2=¢2+s2p%, ()

derivative with respect to time. The displacements are related ) )

to potential functions by andsg , Sp, S are P- e!nd Swave slowngss in the qu!d. and
the solid. Only choosing the terms which lead to finite re-

_deg _deg sponses for large values &, we obtain the solutions to Eq.

W= WiT T 6)
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where ®,(&,p), Po(&,p), and W (&,p) are functions ofp
and ¢ that need to be determined. From EE) and the

displacement—stress relationships, the transformed displace-

ments and stressépressure for the fluidin the fluid are

deo
i} _
and in the solid are
—Ho H
dy
—H —H —H
WQO: U21:_ dz _é‘@zo,
dyt
75 = 1| (537267, 26— - (10
_Ho
= K 26— +(s§p2+zgz)¢/'*1]

Applying the same integral transforms to the continuity

conditions Eq(3), then substituting Eq$9) and(10) into it,
generates a group of linear equations in termsbgté,p),
D,(¢&,p), andW(&,p). Solving the equations yields

Q a, s’ o Q s&p?+2£
VU 2mup a; Du(€,p)’ 2 2mup Du(ép)
2

2mup Dy(§,p)’
where

P1442

Dh(&,p)=(s3p?+28%)°— 482, B+ o, Plss (12)

Substituting Eq.(11) into Egs.(9) and (10), we obtain the
displacements and pressure in the fluid,

“Ho_ Q 1 azssp

W @z
1 27 u Dy(€,p)
1 S
Uﬁl——g—ﬁﬁe“ﬂ, (13
27 p ay Dy(é,p)
4.3
EHoz_gﬂgiealz,
2 py ay Dy(€,p)

and the displacements and stresses in the solid

1
—glz%ﬁ[(sépZ_l_ZfZ)e—azz
- §
~2eabe Mg ey
—H, Q

1
o0 5 apl(sPr2ede

—2¢%e P 2 (14)

H(§ p)’
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IIl. CHARACTERISTIC EQUATION FOR LEAKY
RAYLEIGH AND SCHOLTE WAVES

Dy(&,p)=0 is the characteristic equation for leaky
Rayleigh waves at the interface of fluid—solid half-spaces.
Introducing the substitutiony=ié/pss and notationsq
=g, Issandu=sg/sg, the equatiorD,;=0 can be changed
to the following in terms ofy:

(1—- 2'}/2)2 4'y VY 2_ y q+ 7 q =0.

y2—u?
(15

Equation(15) is the same as that given by Viktor@¢%967,
which differs from the regular Rayleigh equation in the third
term due to the pressure of the fluid. Equati@b) produces
eight Riemann sheets owing to the square roots. The roots
have the physical meaning of normalized slowness with re-
spect toss. When leaky Rayleigh waves exist, we can obtain
six roots, which include two pairs of complex conjugate
pairs corresponding to the leaky Rayleigh wa[\}ée(yzR)
<u?], and two opposite real roots corresponding to the
Scholte wave §2.>u?).

The two pairs of complex conjugate roots corresponding
to the leaky Rayleigh wave take the form of[Re(y)
*ilm(vy)], in which only two roots are acceptable. Becapse
is the Laplace transform variable, ReMmust be negative to
have a finite time domain response. Therefore, only the roots
which lead to Rgf)<0 are acceptable, whepe=ié/ysg. A
quick analysis shows that the two acceptable roots take the
form of yry ro= £ Re(y)—ilm(y). Here, we denote them as
Yr1» Yr2, and noteyr,= — yr1, Where the top bar indicates
complex conjugate.

Analysis also shows thdRe(yr; ro)| <Sr/Ss, Wheresg
is the slowness of Rayleigh wave in free surface solid half-
space. This result confirms that the slowness of the leaky
Rayleigh wave is smaller thasy, i.e., in a fluid—solid half-
space system, the leaky Rayleigh wave will travel faster than
the pure Rayleigh wave in the same free surface solid. This
conclusion is reasonable considering the influence of fluid
pressure applied on solid surface. The imaginary panf
accounts for the energy leaked into fluid. The larger the value
of |[Im(yg1)|, the more energy leaks into the fluid.

The Scholte wave velocity can be obtained from the real
roots = ygen, Where ygep>uU and Sgep= yserSs- Scholte
waves always exist for any fluid—solid combination case. For
the lighter fluids lying on stiffer solids cassg, is only
slightly smaller than the acoustic wave velocity of the fluid,
and the Scholte wave contribution is relatively small. The
property of Scholte waves will be discussed in more detail in
Sec. VII.
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IV. SOLUTION OF PRESSURE IN THE FLUID

x branch point
¢ pole

Im(v)
A

The solution of fluid pressure in the space—time domain
is derived because pressure in the fluid is the most often
measured quantity in practical application. By taking the in-
verse zeroth-order Hankel transform to E&3) and intro-

ducing the substitutiog=p», we have

— Qsépl °°\/772+S|23 p

2w pz Jo \n?+s2 D(n)
X &Pt HSE Y (par) pdy, (16)

whereD(7) is defined as
D(7)=(27+59)°— 47\ 7’ +sp 7+ 55
&\/772+sp 4

+ — ———S.. 1
P2 \/772+S,2: s 7

Original Integral Path

—
i}

FIG. 2. Complex plane and the modified integral path. The indices denote:
P—leaky P wave, S:leaky S wave, LR+leaky R wave, f+fluid acoustic
wave, SCH-Scholte wave.

whereGP(t) is defined as the Green’s function for pressure.
The variablev is related toy in Eq. (15 by v=—yss.

T_hedinc;/erse Laplaceh t(;ansfordm is_be\:jaltéated hby btheAccording to the analysis in the previous section, there are
Cagniard—de Hoop method, as described by Achenbacl,, poles in the right half complex plane, which corre-

(1973. Introducing the following representation &§(x),
s eixs
1\s?—1
and substituting it into Eq(16) yields
—  Qsip; fx
=——"—=Im
0

w? P2

Jo(X)= %Im ds, (18

”+sp 7 g
Vst D

« @ipmrstpzyrP+st
XLp s°—1

Introducing the substitutiorl=—inrs—z\/n2+sz,: and 7@

ds. (19

=jv yields
E=Q—Séﬂlm 7ixEv—.dv
m% P2 0 \/@ D(iv)
% @ Pt
XL p\/§2__1ds’ (20
where

Ll( fw e Pt q ) d [ H(t+zyst—v?—ur)
——ds| = —
1 p\/sz—l dt\ J(t+zys2—v2)2— 2?2

(21)

spond to leaky Rayleigh and Scholte wave arrivals. The in-
tegral path along the negative imaginary axis can be de-
formed to pathl’ as shown in Fig. 2. The new integration
pathT" is defined by the equati0ﬁ=vr—z\/st—v2, which

can be solved fop to yield

71 +2/s$ZR?— 72

R? , 7 is real and GEr<ox,

(23

v(T)=

where R=\r?+7z2. The benefit of deforming the original
integration path td" is obvious, because there is no pole
along the new path. The Green'’s function integration along
the new path is

GP(t)= |mft VSozu(n)” (o)
tp\/slz:—v(r)2 Dliv(7)]

r— 1zl \seR?— 72

XRz\/[t—7+v(7)r]2—v(r)2r2

dr|, (24)

wheret,=rsp+|z| sz —s3 is the leaky P wave arrival time.
GP(t)=0 whent<t,,.

However, when the receiver is located on the interface,
i.e., z=0, the integral patl’ is along the real axis, and

and L represents the Laplace transform. Therefore, the inPasses by the Scholte pole. In this case, the principal value of

verse Laplace transform of ERO) is

L L e e L
w2 p dt 0 \/Sé—v2 D(iv)

H(t+zyst—v2—ur) )
v
2

8 V(t+zys2—v?)2—v?r
=——=—GP(@), (22
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EqQ. (24) must be taken.

The integrand in Eq(24) has a square root singularity at
end pointr=t, which increases the difficulty of numerical
integration. This problem can be solved by further introduc-
ing the following transformation,

=1, coS(6) +1,sir’(0), (25)
wheret,, t, are the lower and upper limits of the integration.
Then the integration interval;<r<t, is mapped to the

fixed interval G=6<mx/2, while

Zhu et al.: Leaky Rayleigh and Scholte waves
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FIG. 3. Green's functionGP(t) for pressure in the fluid at position
=1.5m, z=—0.05m. Material parameters for the fluig =1000 kg/n?,

C= 1500 m/s: for the solidp,= 2400 kg/, Co= 4000 m/s,p = 0.25. FIG. 4. Absolute value of pressutn fluid) and stressr,, (in solid) field

snapshot at=0.72 ms given by EFIT analysis. The interface is subject to a
transient point load that varies with time dgt)=sir? (#t/T) with T

. =200us.

dr=2(t,—tq)sin(#)cog 0),

V. VERIFICATION BY NUMERICAL SIMULATION

VIte— 7+ u(DriP—v(n)?? To verify the obtained analytical solutions, numerical
_ mcoi 0)\(t,—t1)co2(8) + 20()r. (26) analyses were performed to simulate the response for fluid—
solid half-space cases. The elastodynamic finite integration
. ) . technique (EFIT) is a numerical time-domain scheme to
Another square root smgqlanty at Po'mt:tf:SFR can be model elastic wave propagation in homogeneous and hetero-
processed similarly. A similar technique was also used by dEjeneous, dissipative and nondissipative, as well as isotropic
Hoop(1984)._ . . ., ._and anisotropic elastic medi&ellingeret al, 1995. EFIT
The yerncgl component of displacement in the fluid is uses a velocity-stress formalism on a staggered spatial and
also obtained in the same way: temporal grid complex. The starting point of EFIT is the
integral form of the linear governing equations, i.e., the
Q s‘é t \/sé—v(r)zv(r) Cauchy equation of motion, and the equation of deformation
_25"“ jt W rate. EFIT performs integrations over certain control vol-
P umesV, and the surfaces of these ceilsassuming constant
r—rz/\/gém velocity and stress withitV and on eachS. This method
X = > 2d7-. (27 requires staggered grids and leads to a very stable and effi-
t=r+o(nri*=v(n)* cient numerical code, which also allows easy and flexible
treatment of various boundary conditions. In recent years,
Figure 3 shows the Green’s functig®(t) at a near- EFIT has been successfully used for a wide variety of appli-
surface positiom=1.5m,z=—0.05m in the fluid. The ma- cations, especially in the field of nondestructive testing
terial configuration simulates a concrete/water system. ThéSchubert and Marklein, 2003
arrival times of all wave types are marked. It is noticed that  In the present case of a transient point load at a fluid—
the slope is discontinuous at positiobst,, ts, andt;, solid interface, we used a special axisymmetric EFIT code in
which correspond to the leaky P-, leaky S-, and fluid acousticylindrical coordinategSchubertet al, 1998. The water/
waves in water. From the mathematics viewpoint, these diseoncrete case shown in Fig. 3 was studied. The material pa-
continuities come from the branch points along the integratameters are for watep; = 1000 kg/ni, ce=1500 m/s, and
pathT. The poles corresponding to the leaky Rayleigh andor concrete p,=2400kg/nt, P wave velocity cp
Scholte wave arrivals contribute to the large smooth peaks=4000m/s, and Poisson’s ratig=0.25. The vertical tran-
When the receiving position is very close to the interface, thesient point load varies with time as functiori(t)
integral pathI’ in Fig. 2 will bend to the real axis, and a =sir’(#t/T), where the force duration i=200us. A grid
sharp peak will appear nearby the Scholte wave arrival irspacing ofAr=Az=2.5mm and a time step of 0.44s are
Fig. 3. used in order to guarantee stability as well as sufficient dis-
The impulse response to a point loading on the interfaceretization of the shortest wavelengths. The dimensions of
between a fluid and a solid half-space can be obtained frorthe model & 2 m inradial ard 3 m in axial direction, re-
the corresponding step response solution by taking differensulting in 800<1200 grid cells. At the outer boundaries of
tiation with respect to time. Then for any transient loadingthe model, highly effective absorbing boundary conditions
that has arbitrary temporal variation and spatial distributionpased on the perfectly matched layeML) are used in order
the response can be obtained by convolving the impulse reée suppress interfering reflectiofisiu, 1999).
sponse in both time and space domains. Figure 4 shows the cross-sectional snapshot image of

w(t)=—
T
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0.6 ; . . . ‘ leigh wave effects in a free surface half-space by Céiaal.

— Analytical (1961). Achenbach(1973 reproduced Chao’s results in de-
04l Lo Numerica | tail. The simplified solution provides an easy and quick way
to estimate leaky Rayleigh and Scholte wave effects.
= o2 i A. Displacements and stresses in the fluid
[2
o, — | Applying the inverse Hankel and Laplace transforms to
the transformed solution in E¢L3), the pressure in fluid can
be expressed as
0.2+ 4
Q s§ py (=
P(r,zt)=—z——=——=— | Jo(ér
0.4 L L L L L L ! ( ) 27T 27T| P2 Jo O(g )g
0 02 04 o.e( )o.s 1 12 14 16 ,
t(ms etio o
| | - x[TTE P emrrapae ()
FIG. 5. Comparison of the analytical and the numerical solutions for pres- e—ijo (X1 DH(§,p)

sure in the fluid at =1.5 m,z=—0.05 m. The interface is subject to a point . . o
load that varies with time a$(t) = sir? (st/T) with T=200xs. Material ~ Considering the integrand term, the contributions from the
parameters for the fluigh, =1000 kg/m, c.=1500 m/s; for the solich, leaky Rayleigh poles are

=2400 kg/ni, cp=4000 m/s,v=0.25. 3

- ” 6+iw2p— ayz+pt
pressure fieldabsolute valueas generated by EFIT, at time "o 0 Jol€NE e—i a3 Dy(&,p) © dp d
t=0.72ms. Only the region with>0 was calculated, but .
for better illustration the reversed region witk<O is also :f Jo(ér)
shown here. The half-circle in the upper half-plane repre- 0
sents the acoustic wave front in water, and the inclined lines o pd
represent the leaky Rayleigh wave fronts, which are tangent x ¢ S d¢,

ay dDy(&,p)/dp

to the half circle at the leaky angle direction. In this case, the P=i&/SgyRy i €/S5VRy

leaky Rayleigh angle determined by Snell's lawgis43.8°, (29)
measured from the vertical axis. The leaky Rayleigh wave )
front is separable from the subsequent Scholte and fluivhere the expression [(az/ai)

acoustic wave fronts at larger values of radial distandgne <[P/ dDH(&,P)/ D1 ]p=itisqye, itissye, TEPTESENES @ pair of
3-D shape of the combined leaky Rayleigh and fluid acousticomplex conjugate constants, denoteddasandA; .

wave fronts looks like a domed cone. The leaky Rayleigh  Introducing

wave in concrete is also seen, which behaves similarly to the

ordinary Rayleigh wave, and attenuates exponentially with  m, ,=— ' |2 /UZ_Y2R1R2+ t (30)
increasing depth in the solid. In the near-interface region, the ’ YriRrz ! TS
Scholte wave effect is strong in both the fluid and the solidgenerates
Figure 5 shows the analytical and numerical time do-
main near-surface response of the pressure in water, at posi- #1277 PUp=igisgyp g, = ~ €M, (31)

tion r=1.5m, z=—0.05m. Very good agreement betweenwheremfﬁz. Thus, Eq.(29) can be expressed as
analytical and numerical responses is observed.

'lelf Jo(ér) e MdE+ Ay f Jo(ér)ge™ M dg
VI. SIMPLIFIED LEAKY RAYLEIGH WAVE RESPONSE 0 0

In Sec. IV, the complete analytical solution of pressure ~ L emyr
and displacement in the fluid are obtained. However, the in- =2 Refo Are = Jo(€r)€dg
tegral form solution is not always convenient to use. In this
and the next sections, the authors provide a simplified 2 Amy
closed-form solution to the same problem by considering :r_z (1+—m§)3/2 . Rem)>0, (32

only Rayleigh and Scholte pole contributions. This simplifi-
cation is acceptable when measurements are taken at a largdsere we use the zeroth-order Hankel transform formula
distance from the source. .
According to the previous analysis, the wave field ex- f Jo(ér)éedédé= ——
; ; ; ; i 0 24 42)32°
cited by a normal point load at the interface includes contri- 0 (re+a2)
butions from Iegky P, S, Rayleigh, fluid acou_stlc, and _Scholtq:rom Eq.(28), the pressur@ is expressed as
waves. Analysis shows that, at large horizontal distances
from the source, disturbances near the interface are domi- Qpi 1 , e{ A;my

Rga)>0. (33

nated by leaky Rayleigh and Scholte wave contributions, P= (1+—mz)~°”2 . (34
which can be obtained from the residues at corresponding 1

poles. The similar idea was already used to investigate Ray-  Similarly, by introducing
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A2:§ a—zp} o= 9 iR BS”pl BGnsl
aDH(f!p)/&p p=i&/Sgvry 222 rs r2 (1+n§1)3/2 (1+n§1)3/2 !
35
3:2'0_52} 9 Qi [ -B &
CYl aDH(fvp)/(}p p:iflssle zr2 ar r2 (1+ n§1)3/2 (1+ n§1)3/2 ’

the vertical and radial components of the displacement in thevhere the coefficients are
fluid are obtained:

) o | S 4
1= 500 (2 o @2 ;
W1=9§ER A2 paDH(fap)/O”p p=i¢/Sg¥Ry
mp2 T [ (1+m))e) .
, (36 B |26
Qssl my 2 [ paDu(EPIIP] e
uy=————Rqg |1— - p=iélsgyry
Tpr (1+m3? =)’ i
Bs= (sp*ra 40
Rdml)>0 3__paDH(§,p)/ﬁp p=i§/SSlev ( )
Care should be taken with the square root when calcu- )
lating my , from Eq. (30). To have bounded results, only the B._ 28%a,B
branch that gives Re()>0 should be selected. 4| pdDy(&,p)/ap T
SYRL
B. Displacement and stress in the solid half-space 5 :' (s2p?+2£2)?
The response of the leaky Rayleigh wave in the solid > [ pdDy(&,p)/dp '

; . e . P=i&/ssyRry
can be obtained in a similar way. Introducing

B6:284, B7:281.

1 z .
”pl,ZZE i;\/ﬁzmz—qz—”, The expressions in Eq39) are only valid in the region
' 37) where Ref ) >0 and Refg ;) >0. Other stress compo-
1 R \/27 ) nents in the solid can be derived from the following stress—
Ns1,27 Yaira| T Yrige~ 1717 displacement relations:
yields dup U Wy
Tg= N+ 2p) — =+ N =+ —— 1,
[— aZ+ pt]p:iglsSleRz (41)
- U, AUy, W,
r VA . T 2:()\2+2/.L)_+)\2 —+ —.
AR iVyle,R2_q2?_|T =—¢&Mp1, " r a0z
) 38 . . . .
[ = BZ+ Ptp=isisgyn r (38) \(llvécxét:nuatlon and dispersion of leaky Rayleigh
e J_r,/yﬁRle_ 1_Z_iT =— g, In addition to the geometric decay due to the effect of
YR1R2| r point loading, which varies as {/ along the interface for

The real part of Eq(38) must be negative to have bounded the Rayleigh wave, there is another type of attenuation
responses, therefore the real part®igf, n,,, Ng;, Ns; must ~ caused by continuous radiatiékeakage of energy into the
be positive. Using the similar argument for dealing with fluid. In frequency domain, the solutions are exponential
my,, only those results oh,y, Ny, Ng, Ng that have functions of (—¢r), where¢ has the physical meaning of
positive real parts are acceptable. In additiog,, n,, and ~ Wwavenumber. According to E€32), higher frequencylarger
Ng1, Nep should be Comp|ex Conjugate pairs_ §) contents give more attenuation durlng propagation. There-
Applying the inverse Hankel and Laplace transforms tofore the waveform generated by a transient loading becomes
Eq.(14) and calculating the residues at Rayleigh poles yieldgvider with increasing distance, i.e., it shows dispersion prop-

the displacements and stresses in the solid, erty due to leakage-induced attenuation, although the phase
5 velocity of leaky Rayleigh waves does not vary with fre-

Qss1 B1 B quency.

Wo=o oo 2 z |’
mp2 T V14nd, V1+ng

y _Q 51 Re{ ( Np1 ) VIl. SCHOLTE WAVE RESPONSE

2=~ — 3| L7 T
r \/ 2 )

T p2 1+ The real roots of the Scholte equation correspond to

Ns1

- B4< 1 Vi+ng
(39
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wave solutions can be obtained by calculating the residues at

)] Scholte wave propagation along the interface. The Scholte
the polesy= * y¢.,. For common cases of light fluids lying



on stiff solids, the rootys.| = Sscn/Ss is slightly larger than 0.5 — \ ‘ ﬂ
— EXac

u=sg/ss. Therefore, Eqs(31) and(38) are changed to 041 | verens Simplified ]
h
[a12+pt]p=i§/issysch: _frmi,cz ) 0.3r ]
h 0.2+
[—axz+ptlpigesgy, = —€MpLa: (42) — o
< 01l
n e
[=BZ+ptlp=igrsgy = —£érngpy, o 0
where 0.1¢ ;
P
mSCh:— 1 ,/72 _u2_z+iL hl
1,2 Ysch sch r— Sqf ’ 0.3}

1 z t
“fni,hf—y h<\/7§ch_q2_i|_)a (43
SC

r = sqf

1 z t
it [ i |
C

r Sgl

— Exact
0.3} | aveee- Simplified

The solutions for the leaky Rayleigh wave are also valid for
the Scholte wave by substitutimg®*", n®", andn3®" for m, 0.2t
Ny, andng. The first terms in the expressions of H¢3)
represent the real parts, which are positive and result in the,(E
decay inz direction. It can be seen that the Scholte wavea o
decays exponentially ia direction in both the fluid and the &
solid. For lighter fluid cases, i.e., where the acoustic imped-
ance of the fluid is less than that of the soli\q’i?sc— u?is 0.2}
much smaller than/y2.—q? and \/y2,—1. This indicates
that the Scholte wave attenuates much more quickly in the
solid than in the fluid. Therefore, in contrast to the leaky 04;
Rayleigh wave, most of Scholte wave energy is localized in

the fluid (Gusevet al, 1996. The Scholte wave generation
efficiency increases with increasing acoustic impedance of (b)

the fluid. For example, it is much easier to generate Scholte

waves in the water/concrete configuration than the airFIG. 6. Comparison of the exact and simplified solutions for water/concrete
concrete configuration. In fact, almost no Scholte wave effec¢ase. Pressure in the fluid at positi@ r=1.5m,z=-0.05m, andb) r
can be observed in the air/concrete case. With increasingﬁfar;'f'(Zt)::_S?r'?(?ﬁ%rﬁgafr:fa;&f;:?ﬁgtéﬂ; g‘;L’:nLZ?:rtshf;r"tire'efTu‘?gth
impedance of the fluid, Scholte waves have deeper penetrg-_ 1000 kgini, c.=1500m/s; and for the solich,=2400 kg/m, cp

tion depth in the solid. This property provides the possibility = 4000 m/s,v=0.25.

for NDT application of Scholte waves, which was studied

experimentally by Glorieuet al. (2001). Because thereisno i .
leakage during Scholte wave propagation along the radiaiimplified and exact analytical solutions decreases. Generally

direction, the decay in the radial direction is only attributedSPeaking, the simplified solution provides better estimation
to the geometrical effect. In 2-D cases, the Scholte wav@f Pressure for larger and smallefz| cases, where the con-

travels without attenuation along the propagation directiofffiPution of body waves is negligible.
(Glorieux et al,, 2001). Figures Ta) and (b) show the comparison of the exact

and simplified solutions for the air/concrete case. The re-
ceiver positions are=1.0m,z=-0.05m andr=1.0m, z
=—0.5m, respectively. Good agreement is observed near
the leaky Rayleigh wave arrival time for both positions,
Figure 6 shows the comparison of the exact and simpliwhile obvious differences can be seen near the Scholte and
fied analytical solutions for fluid pressure for the water/fluid acoustic wave arrival times. The reason is that the leaky
concrete case. In Fig.(®, when the receiver position is Rayleigh wave is well separated from the fluid acoustic
close to the interfacer&1.5m, z=—0.05m), good agree- wave, and Scholte wave contribution is very small compared
ment is observed around the leaky Rayleigh and Scholtéo the acoustic wave contribution in the fluid for air/concrete
wave arrival times. The small yet noticeable differences beease, even in the near-interface region. Therefore, for the
fore the leaky Rayleigh and Scholte wave arrivals are due tair/concrete configuration, the pressure field in the fluid is
the absence of leaky body waves and fluid acoustic waves idominated by leaky Rayleigh and fluid acoustic waves. In
the simplified solution. When the receiver is away from theair-coupled sensing, the leaky Rayleigh wave is usually the
interface, as shown in Fig. () for receiver positionr component in which we are interested. The acoustic wave
=1.5m, z=—-0.5m, the degree of agreement between thecontribution in the fluid can be separated by increasing mea-

0.2 0.4

VIlIl. COMPARISON OF THE EXACT AND SIMPLIFIED
SOLUTIONS
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x10° Hoop method. Simplified formulations are also derived,
1L ‘ ‘ ‘ ‘ Exact ] which provide an easy and quick way to estimate leaky Ray-
---------- Simplified leigh and Scholte wave contributions. The following conclu-
sions can be drawn based on the analysis:

J (1) A transient point load applied to the interface is an ef-

fective way to generate leaky Rayleigh waves in the

N w r fluid. For air-coupled wave detection in concrete, the ex-
tf

citation effectiveness of leaky Rayleigh waves is around
0.1-1.0 Pa/kN, depending on the impact force duration.
(2) For the light fluid/heavy solid case, the leaky Rayleigh
wave is separable from Scholte and acoustic waves in
the fluid when distance is large enough, where de-
0.5 1 15 2 25 3 35 pends on velocities of leaky Rayleigh, Scholte, and
@ acoustic waves, vertical distanf#, and force duration.
For the air—concrete configuration shown in Figa)7
x 10° where|z|=0.05m and >0.2 m, the difference in arrival
— Exact ‘ ‘ time between leaky Rayleigh and acoustic waves is
L Simplified 1 . >362 us. Therefore the received signals will be domi-

nated by leaky Rayleigh waves, which provide important
: n ’ material information of the underlying solid.
0 J (3) Simplified solutions are obtained when contributions
w r from leaky Rayleigh waves and Scholte waves poles
-0.5¢ fT ] only are considered. Equatio34)—(36) and (39) give
the solution to responses in the fluid and solid, respec-
tively. The simplified solution accurately simulates the
.50 ¢ i transient pressure field response for the air/concrete case
when the fluid acoustic wave contribution is removed or
% 05 1 15 2 25 3 35 4 separated.
t(ms) (4) The Scholte wave contribution is prominent in the near-
(b) interface region for the water/concrete case. Because
most of the energy of Scholte waves is localized in the
FIG. 7. Compar_ison of t_he exact_ gnd simplified solutions for air/concrete fluid, however, Scholte wave properties are not very sen-
Cf‘f% Pressure in the fluid at positi@ r=1.0m, z=~005m, andb) r sitive to the variation of the underlying solid materials,
=1.0m,z=—-0.5m. The interface is subject to a point load that varies with . o .
time asf (t) = sir(mt/T) with T=200 us. Material parameters for the fluid which limits the NDE application of Scholte waves for

p1=1.21kg/Mf, ce=343mis; for the solid p,=2400kg/nt, cp the common light fluid/heavy solid cases.
=4000 m/s,v=0.25.

P (Pa)
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