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The analysis of acoustic waves generated by a transient normal point load applied on a fluid–solid
interface is presented. The closed-form exact solution of the wave motion is obtained by using
integral transform techniques. The obtained analytical solution provides necessary theoretical
background for optimization of fluid-coupled ultrasonic and acoustic wave detection in experiments.
Numerical simulation~elastodynamic finite integration technique! is performed to verify the
obtained analytical solution. Detailed descriptions of leaky Rayleigh and Scholte wave solutions are
presented. A simplified solution to isolate the contributions of leaky Rayleigh and Scholte waves
generated by a transient point load is proposed, and closed-form formulations for displacement and
stress components are then presented. The simplified solution is compared to the exact solution for
two configurations: water/concrete and air/concrete. The excitation effectiveness of leaky Rayleigh
waves for the air/concrete configuration is studied, which has practical significance to air-coupled
sensing in civil engineering structures. ©2004 Acoustical Society of America.
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I. INTRODUCTION

The propagating leaky Rayleigh wave that emana
from a fluid–solid interface has been used as an effec
means for surface and subsurface defect detection. With
cent improvements in instrumentation, air-coupled transd
ers have been used for detection of leaky surface~Zhu et al.,
2001! and leaky guided waves~Castaingset al., 2001!. With
the advantage of noncontact sensing, air-coupled transdu
provide an opportunity for quick scanning and imaging
large civil engineering structures by detecting the leaky R
leigh wave. Therefore, detailed study of leaky surface wa
for this case is needed.

Extensive studies and applications of leaky surfa
waves have been reported during the past 40 years. A c
prehensive study of Rayleigh waves and leaky Rayle
waves has been given by Viktorov~1967!, where leaky Ray-
leigh waves at the interfaces of a solid half-space with bo
fluid layer and a fluid half-space were investigated in gr
detail. Leaky Rayleigh waves propagate with a veloc
slightly higher than the ordinary Rayleigh wave, and atte
ate more intensively with distance due to continuous ene
radiation into the fluid. It was initially believed that the leak
Rayleigh wave exists when the fluid wave velocitycF is
smaller than the leaky Rayleigh wave velocitycLR . How-
ever, Mozhaev and Weihnacht~2002! showed the actua
threshold phase velocity for leaky Rayleigh wave existe
was 1.45% lower than the acoustic wave velocity of t
fluid. The character and existence conditions of leaky R
leigh and Scholte waves were also investigated experim

a!Author to whom correspondence should be addressed. Electronic
johnpop@uiuc.edu
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tally by Glorieux et al. ~2001!. The propagation of leaky
Rayleigh waves under the influences of viscous damping
heat conduction at the fluid–solid interface was studied
Qi ~1994!, who concluded that the effect of viscosity can
neglected for fluids with Reynolds number larger than 25
For common fluids such as water and air at normal driv
frequencies~,10 MHz!, the viscous effect of the fluid can
be neglected because the Reynolds numbers are far abov
critical value of 2500.

The response of leaky waves owing to transient po
loading is of great practical interest to nondestructive eva
ation ~NDE! researchers, especially in civil engineerin
where an impulse hammer or a point impactor applied to
surface of the solid is often used as a transient wave sou
Gusevet al. ~1996! provided detailed theoretical analyses
laser-induced wave motions at the fluid–solid interfa
which include Scholte, leaky Rayleigh, and lateral wav
General solutions for interface wave motion were given
ing a 2-D formulation. 2-D and 3-D analytical solutions for
fluid–solid configuration subjected to implosive line an
point sources in the fluid have been given by de Hoopet al.
~1983, 1984!. However, for the case of the ‘‘Lamb’’ problem
in fluid–solid configuration, where a normal transient po
load is applied at the fluid–solid interface, no closed-fo
exact solution has been reported so far.

In this paper, Laplace and Hankel integral transforms
employed to derive the full analytical solution to th
‘‘Lamb’’ problem in a fluid–solid half-space system, where
point load, varying with time as a step function, is applied
the interface. The obtained step response solution is show
integral format, which can be calculated numerically. Im
pulse responses are then obtained by differentiating the
responses. Therefore, for any transient impact loading
il:
2101)/2101/10/$20.00 © 2004 Acoustical Society of America
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has arbitrary temporal variation and spatial distribution,
responses can be obtained by convolving the impulse
sponse in time and space domains. The obtained analy
solutions are verified by EFIT~elastodynamic finite integra
tion technique! numerical simulation, which is a powerfu
tool for elastodynamic wave field analysis. Then a simplifi
analytical formulation for the pressure field in the fluid
derived and illustrated.

II. COMPLETE FORMULATION

Consider a fluid–solid half-space system as shown
Fig. 1. The solid half-space is given byz.0, and the fluid by
z,0. The properties of the fluid are given by the Lame´ con-
stantl1 and mass densityr1 , and those of the solid by th
Laméconstantsl2 andm and densityr2 . The interface be-
tween the fluid and solid half-space is subjected to a nor
point load of magnitudeQH(t), whereH(t) is the Heaviside
step function. Because the wave motion in the fluid and s
generated by the point load is axially symmetric about thz
axis, cylindrical coordinates are employed, where the ori
is located at the load point on the interface.

A. Fluid–solid half-space

Introducing displacement potential functionsw1 in the
fluid andw2 andc in the solid, the governing equations fo
the fluid and the solid half-spaces are

]2w1

]r 2
1

1

r

]w1

]r
1

]2w1

]z2
5

1

cF
2

ẅ1 ,

]2w2

]r 2
1

1

r

]w2

]r
1

]2w2

]z2
5

1

cP
2

ẅ2 , ~1!

]2c

]r 2
1

1

r

]c

]r
1

]2c

]z2
2

c

r 2
5

1

cS
2

c̈,

wherecF
25l1 /r1 is the acoustic wave velocity in the fluid

andcP
2 5(l212m)/r2 andcS

25m/r2 are the P- and S-wav
velocities in the solid. The double dots represent a dou
derivative with respect to time. The displacements are rela
to potential functions by

u15
]w1

]r
, w15

]w1

]z
,

FIG. 1. A transient point load applied at the interface of a fluid–solid h
space system.
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, w25

]w2

]z
1

1

r

]~rc!

]r
, ~2!

where the subscripts 1 and 2 represent quantities relate
the fluid and solid, respectively.

B. Continuity and initial condition

A point load is applied at the origin as a Dirac del
function in space and varies as a Heaviside step functio
time, which can be expressed asQH(t)d(r )/2pr . Because
ideal fluid and shear-free interface conditions are assum
only the normal stress and vertical component of the d
placement are continuous at the interface. The contin
conditions atz50 are

w15w2 ,

tzz25tzz11~2Q!H~ t !
d~r !

2pr
52P2QH~ t !

d~r !

2pr
, ~3!

tzr25tzr150,

wheretzz and tzr are the normal and shear components
stress, and P the pressure in the fluid.

Assuming the system is at rest prior tot50, we have

w1~r ,z,0!5ẅ1~r ,z,0!

5w2~r ,z,0!5ẅ2~r ,z,0!

5c2~r ,z,0!5c̈2~r ,z,0!50. ~4!

C. Integral transform

One-sided Laplace and Hankel transforms are used
obtain solutions to the equations. The Laplace andnth-order
Hankel transforms are defined respectively as

f̄ ~p!5E
0

`

f ~ t !e2pt dt, f Hn~j!5E
0

`

f ~r !Jn~jr !r dr , ~5!

wherep andj are variables of the Laplace and Hankel tran
forms, respectively.

Applying the Laplace transform to Eq.~1! with respect
to time t and the zeroth- and first-order Hankel transfo
with respect to the radial distancer yields

d2w̄1
H0

dz2
2a1

2w̄1
H050,

~6!
d2w̄2

H0

dz2
2a2

2w̄2
H050,

d2c̄H1

dz2
2b2c̄H150,

where

a1
25j21sF

2p2, a2
25j21sP

2 p2, b25j21sS
2p2, ~7!

andsF , sP , sS areP- andS-wave slowness in the fluid an
the solid. Only choosing the terms which lead to finite r
sponses for large values ofuzu, we obtain the solutions to Eq
~6!,

-

Zhu et al.: Leaky Rayleigh and Scholte waves
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w̄1
H05F1~j,p!ea1z,

w̄2
H05F2~j,p!e2a2z, c̄H15C~j,p!e2bz, ~8!

where F1(j,p), F2(j,p), and C(j,p) are functions ofp
and j that need to be determined. From Eq.~2! and the
displacement–stress relationships, the transformed disp
ments and stresses~pressure for the fluid! in the fluid are

w̄1
H05

dw̄1
H0

dz
, ū1

H152jw̄1
H0, P̄H052r1p2w̄1

H0, ~9!

and in the solid are

w̄2
H05

dw̄2
H0

dz
1jc̄H1, ū2

H152
dc̄H1

dz
2jw̄2

H0,

t̄zz2
H0 5mF ~sS

2p212j2!w̄2
H012j

dc̄H1

dz G , ~10!

t̄zr2
H1 52mF2j

dw̄2
H0

dz
1~sS

2p212j2!c̄H1G .

Applying the same integral transforms to the continu
conditions Eq.~3!, then substituting Eqs.~9! and~10! into it,
generates a group of linear equations in terms ofF1(j,p),
F2(j,p), andC(j,p). Solving the equations yields

F15
Q

2pmp

a2

a1

sS
2p2

DH~j,p!
, F252

Q

2pmp

sS
2p212j2

DH~j,p!
,

C52
Q

2pmp

2a2j

DH~j,p!
, ~11!

where

DH~j,p!5~sS
2p212j2!224j2a2b1

r1

r2
p4sS

4 a2

a1
. ~12!

Substituting Eq.~11! into Eqs.~9! and ~10!, we obtain the
displacements and pressure in the fluid,

w̄1
H05

Q

2p

1

m

a2sS
2p

DH~j,p!
ea1z,

ū1
H152

Q

2p

1

m

a2

a1

sS
2pj

DH~j,p!
ea1z, ~13!

P̄H052
Q

2p

r1

r2

a2

a1

sS
4p3

DH~j,p!
ea1z,

and the displacements and stresses in the solid

ū2
H15

Q

2p

1

mp
@~sS

2p212j2!e2a2z

22a2be2bz#
j

DH~j,p!
,

w̄2
H05

Q

2p

1

mp
@~sS

2p212j2!e2a2z

22j2e2bz#
a2

DH~j,p!
, ~14!
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t̄zz2
H0 52

Q

2p

1

p
@~sS

2p212j2!2e2a2z

24a2bj2e2bz#
1

DH~j,p!
,

t̄zr2
H1 5

Q

2p

1

p
@2e2a2z1e2bz#

2a2j~sS
2p212j2!

DH~j,p!
.

III. CHARACTERISTIC EQUATION FOR LEAKY
RAYLEIGH AND SCHOLTE WAVES

DH(j,p)50 is the characteristic equation for leak
Rayleigh waves at the interface of fluid–solid half-spac
Introducing the substitutiong5 i j/psS and notationsq
5sL /sS andu5sF /sS , the equationDH50 can be changed
to the following in terms ofg:

~122g2!224g2Ag221Ag22q21
r1

r2

Ag22q2

Ag22u2
50.

~15!

Equation~15! is the same as that given by Viktorov~1967!,
which differs from the regular Rayleigh equation in the thi
term due to the pressure of the fluid. Equation~15! produces
eight Riemann sheets owing to the square roots. The r
have the physical meaning of normalized slowness with
spect tosS . When leaky Rayleigh waves exist, we can obta
six roots, which include two pairs of complex conjuga
pairs corresponding to the leaky Rayleigh wave@Re(gR

2)
,u2#, and two opposite real roots corresponding to t
Scholte wave (gsch

2 .u2).
The two pairs of complex conjugate roots correspond

to the leaky Rayleigh wave take the form of6@Re(g)
6i Im(g)#, in which only two roots are acceptable. Becausp
is the Laplace transform variable, Re(p) must be negative to
have a finite time domain response. Therefore, only the ro
which lead to Re(p),0 are acceptable, wherep5 i j/gsS . A
quick analysis shows that the two acceptable roots take
form of gR1,R256Re(g)2i Im(g). Here, we denote them a
gR1, gR2, and notegR252ḡR1, where the top bar indicate
complex conjugate.

Analysis also shows thatuRe(gR1,R2)u,sR /sS , wheresR

is the slowness of Rayleigh wave in free surface solid h
space. This result confirms that the slowness of the le
Rayleigh wave is smaller thansR , i.e., in a fluid–solid half-
space system, the leaky Rayleigh wave will travel faster th
the pure Rayleigh wave in the same free surface solid. T
conclusion is reasonable considering the influence of fl
pressure applied on solid surface. The imaginary part ofgR

accounts for the energy leaked into fluid. The larger the va
of uIm(gR1)u, the more energy leaks into the fluid.

The Scholte wave velocity can be obtained from the r
roots 6gsch, where gsch.u and ssch5gschsS . Scholte
waves always exist for any fluid–solid combination case. F
the lighter fluids lying on stiffer solids case,ssch is only
slightly smaller than the acoustic wave velocity of the flu
and the Scholte wave contribution is relatively small. T
property of Scholte waves will be discussed in more detai
Sec. VII.
2103Zhu et al.: Leaky Rayleigh and Scholte waves
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IV. SOLUTION OF PRESSURE IN THE FLUID

The solution of fluid pressure in the space–time dom
is derived because pressure in the fluid is the most o
measured quantity in practical application. By taking the
verse zeroth-order Hankel transform to Eq.~13! and intro-
ducing the substitutionj5ph, we have

P̄52
QsS

4

2p

r1

r2
E

0

` Ah21sP
2

Ah21sF
2

p

D~h!

3epzAh21sF
2
J0~phr !h dh, ~16!

whereD(h) is defined as

D~h!5~2h21sS
2!224h2Ah21sP

2Ah21sS
2

1
r1

r2

Ah21sP
2

Ah21sF
2

sS
4. ~17!

The inverse Laplace transform is evaluated by
Cagniard–de Hoop method, as described by Achenb
~1973!. Introducing the following representation ofJ0(x),

J0~x!5
2

p
Im E

1

` eixs

As221
ds, ~18!

and substituting it into Eq.~16! yields

P̄52
QsS

4

p2

r1

r2
Im E

0

` Ah21sP
2

Ah21sF
2

h

D~h!
dh

3E
1

`

p
eiphrs1pzAh21sF

2

As221
ds. ~19!

Introducing the substitutiont52 ihrs2zAh21sF
2 and h

5 iv yields

P̄5
QsS

4

p2

r1

r2
Im E

0

2 i` AsP
2 2v2

AsF
22v2

v
D~ iv !

dv

3E
1

`

p
e2pt

As221
ds, ~20!

where

L21S E
1

`

p
e2pt

As221
dsD 5

d

dt S H~ t1zAsF
22v22vr !

A~ t1zAsF
22v2!22v2r 2D

~21!

and L represents the Laplace transform. Therefore, the
verse Laplace transform of Eq.~20! is

P~ t !5
QsS

4

p2

r1

r2

d

dt S Im E
0

2 i` AsP
2 2v2

AsF
22v2

v
D~ iv !

3
H~ t1zAsF

22v22vr !

A~ t1zAsF
22v2!22v2r 2

dv D
5

QsS
4

p2

r1

r2

d

dt
GP~ t !, ~22!
2104 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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whereGP(t) is defined as the Green’s function for pressu
The variablev is related tog in Eq. ~15! by v52gsS .
According to the analysis in the previous section, there
two poles in the right half complexv plane, which corre-
spond to leaky Rayleigh and Scholte wave arrivals. The
tegral path along the negative imaginary axis can be
formed to pathG as shown in Fig. 2. The new integratio
pathG is defined by the equationt5vr 2zAsF

22v2, which
can be solved forv to yield

v~t!5
tr 1zAsF

2R22t2

R2
, t is real and 0<t<`,

~23!

where R5Ar 21z2. The benefit of deforming the origina
integration path toG is obvious, because there is no po
along the new path. The Green’s function integration alo
the new path is

GP~ t !5S Im E
tp

t AsP
2 2v~t!2

AsF
22v~t!2

v~t!

D@ iv~t!#

3
r 2tz/AsF

2R22t2

R2A@ t2t1v~t!r #22v~t!2r 2
dt D , ~24!

wheretp5rsP1uzuAsF
22sP

2 is the leaky P wave arrival time
GP(t)50 whent,tp .

However, when the receiver is located on the interfa
i.e., z50, the integral pathG is along the real axis, and
passes by the Scholte pole. In this case, the principal valu
Eq. ~24! must be taken.

The integrand in Eq.~24! has a square root singularity a
end pointt5t, which increases the difficulty of numerica
integration. This problem can be solved by further introdu
ing the following transformation,

t5t1 cos2~u!1t2 sin2~u!, ~25!

wheret1 , t2 are the lower and upper limits of the integratio
Then the integration intervalt1<t<t2 is mapped to the
fixed interval 0<u<p/2, while

FIG. 2. Complexv plane and the modified integral path. The indices deno
P→leaky P wave, S→leaky S wave, LR→leaky R wave, f→fluid acoustic
wave, SCH→Scholte wave.
Zhu et al.: Leaky Rayleigh and Scholte waves



d

is

Th
a

st
di
ra
n
k

th
a
l i

ac
ro
re
ng
on

r

al
id–
tion
to
ero-
opic

and
e

he
ion
ol-
t

effi-
ble
rs,

pli-
ng

id–
in

pa-

is-
of

f
ns

of

o a
dt52~ t22t1!sin~u!cos~u!,

A@ t22t1v~t!r #22v~t!2r 2

5A~ t22t1! cos~u!A~ t22t1!cos2~u!12v~t!r . ~26!

Another square root singularity at pointt5t f5sFR can be
processed similarly. A similar technique was also used by
Hoop ~1984!.

The vertical component of displacement in the fluid
also obtained in the same way:

w~ t !52
Q

p2

sS
4

r2
Im E

tp

t AsP
2 2v~t!2v~t!

D@ iv~t!#R2

3
r 2tz/AsF

2R22t2

A@ t2t1v~t!r #22v~t!2r 2
dt. ~27!

Figure 3 shows the Green’s functionGP(t) at a near-
surface positionr 51.5 m, z520.05 m in the fluid. The ma-
terial configuration simulates a concrete/water system.
arrival times of all wave types are marked. It is noticed th
the slope is discontinuous at positionst5tp , ts , and t f ,
which correspond to the leaky P-, leaky S-, and fluid acou
waves in water. From the mathematics viewpoint, these
continuities come from the branch points along the integ
path G. The poles corresponding to the leaky Rayleigh a
Scholte wave arrivals contribute to the large smooth pea
When the receiving position is very close to the interface,
integral pathG in Fig. 2 will bend to the real axis, and
sharp peak will appear nearby the Scholte wave arriva
Fig. 3.

The impulse response to a point loading on the interf
between a fluid and a solid half-space can be obtained f
the corresponding step response solution by taking diffe
tiation with respect to time. Then for any transient loadi
that has arbitrary temporal variation and spatial distributi
the response can be obtained by convolving the impulse
sponse in both time and space domains.

FIG. 3. Green’s functionGP(t) for pressure in the fluid at positionr
51.5 m, z520.05 m. Material parameters for the fluidr151000 kg/m3,
cF51500 m/s; for the solid,r252400 kg/m3, cP54000 m/s,v50.25.
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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V. VERIFICATION BY NUMERICAL SIMULATION

To verify the obtained analytical solutions, numeric
analyses were performed to simulate the response for flu
solid half-space cases. The elastodynamic finite integra
technique ~EFIT! is a numerical time-domain scheme
model elastic wave propagation in homogeneous and het
geneous, dissipative and nondissipative, as well as isotr
and anisotropic elastic media~Fellinger et al., 1995!. EFIT
uses a velocity-stress formalism on a staggered spatial
temporal grid complex. The starting point of EFIT is th
integral form of the linear governing equations, i.e., t
Cauchy equation of motion, and the equation of deformat
rate. EFIT performs integrations over certain control v
umesV, and the surfaces of these cellsS, assuming constan
velocity and stress withinV and on eachS. This method
requires staggered grids and leads to a very stable and
cient numerical code, which also allows easy and flexi
treatment of various boundary conditions. In recent yea
EFIT has been successfully used for a wide variety of ap
cations, especially in the field of nondestructive testi
~Schubert and Marklein, 2003!.

In the present case of a transient point load at a flu
solid interface, we used a special axisymmetric EFIT code
cylindrical coordinates~Schubertet al., 1998!. The water/
concrete case shown in Fig. 3 was studied. The material
rameters are for water,r151000 kg/m3, cF51500 m/s, and
for concrete r252400 kg/m3, P wave velocity cP

54000 m/s, and Poisson’s ration50.25. The vertical tran-
sient point load varies with time as functionf (t)
5sin2(pt/T), where the force duration isT5200ms. A grid
spacing ofDr 5Dz52.5 mm and a time step of 0.44ms are
used in order to guarantee stability as well as sufficient d
cretization of the shortest wavelengths. The dimensions
the model are 2 m in radial and 3 m in axial direction, re-
sulting in 80031200 grid cells. At the outer boundaries o
the model, highly effective absorbing boundary conditio
based on the perfectly matched layer~PML! are used in order
to suppress interfering reflections~Liu, 1999!.

Figure 4 shows the cross-sectional snapshot image

FIG. 4. Absolute value of pressure~in fluid! and stresstzz ~in solid! field
snapshot att50.72 ms given by EFIT analysis. The interface is subject t
transient point load that varies with time asf (t)5sin2 (pt/T) with T
5200ms.
2105Zhu et al.: Leaky Rayleigh and Scholte waves
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pressure field~absolute value! as generated by EFIT, at tim
t50.72 ms. Only the region withr .0 was calculated, bu
for better illustration the reversed region withr ,0 is also
shown here. The half-circle in the upper half-plane rep
sents the acoustic wave front in water, and the inclined li
represent the leaky Rayleigh wave fronts, which are tang
to the half circle at the leaky angle direction. In this case,
leaky Rayleigh angle determined by Snell’s law isu543.8°,
measured from the vertical axis. The leaky Rayleigh wa
front is separable from the subsequent Scholte and fl
acoustic wave fronts at larger values of radial distancer. The
3-D shape of the combined leaky Rayleigh and fluid acou
wave fronts looks like a domed cone. The leaky Rayle
wave in concrete is also seen, which behaves similarly to
ordinary Rayleigh wave, and attenuates exponentially w
increasing depth in the solid. In the near-interface region,
Scholte wave effect is strong in both the fluid and the so

Figure 5 shows the analytical and numerical time d
main near-surface response of the pressure in water, at
tion r 51.5 m, z520.05 m. Very good agreement betwe
analytical and numerical responses is observed.

VI. SIMPLIFIED LEAKY RAYLEIGH WAVE RESPONSE

In Sec. IV, the complete analytical solution of pressu
and displacement in the fluid are obtained. However, the
tegral form solution is not always convenient to use. In t
and the next sections, the authors provide a simplifi
closed-form solution to the same problem by consider
only Rayleigh and Scholte pole contributions. This simpl
cation is acceptable when measurements are taken at a
distance from the source.

According to the previous analysis, the wave field e
cited by a normal point load at the interface includes con
butions from leaky P, S, Rayleigh, fluid acoustic, and Scho
waves. Analysis shows that, at large horizontal distan
from the source, disturbances near the interface are do
nated by leaky Rayleigh and Scholte wave contributio
which can be obtained from the residues at correspond
poles. The similar idea was already used to investigate R

FIG. 5. Comparison of the analytical and the numerical solutions for p
sure in the fluid atr 51.5 m,z520.05 m. The interface is subject to a poin
load that varies with time asf (t)5sin2 (pt/T) with T5200ms. Material
parameters for the fluidr151000 kg/m3, cF51500 m/s; for the solidr2

52400 kg/m3, cP54000 m/s,v50.25.
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leigh wave effects in a free surface half-space by Chaoet al.
~1961!. Achenbach~1973! reproduced Chao’s results in de
tail. The simplified solution provides an easy and quick w
to estimate leaky Rayleigh and Scholte wave effects.

A. Displacements and stresses in the fluid

Applying the inverse Hankel and Laplace transforms
the transformed solution in Eq.~13!, the pressure in fluid can
be expressed as

P~r ,z,t !52
Q

2p

sS
4

2p i

r1

r2
E

0

`

J0~jr !j

3E
e2 i`

e1 i` a2

a1

p3

DH~j,p!
ea1z1pt dp dj. ~28!

Considering the integrand term, the contributions from
leaky Rayleigh poles are

I 15
1

2p i E0

`

J0~jr !jE
e2 i`

e1 i` a2

a1

p3

DH~j,p!
ea1z1pt dp dj

5E
0

`

J0~jr !

3jFa2

a1

p3

]DH~j,p!/]p
ea1z1ptG

p5 i j/sSgR1 ,i j/sSgR2

dj,

~29!

where the expression @(a2 /a1)
3@p3/]DH(j,p)/]p##p5 i j/sSgR1 ,i j/sSgR2

represents a pair of

complex conjugate constants, denoted asA1 and Ā1 .
Introducing

m1,252
i

gR1,R2
Fz

r
Au22gR1,R2

2 1
t

sSr G ~30!

generates

@a1z1pt#p5 i j/sSgR1,R2
52jrm1,2, ~31!

wherem15m̄2 . Thus, Eq.~29! can be expressed as

I 15A1E
0

`

J0~jr !je2jm1rdj1Ā1E
0

`

J0~jr !je2jm2r dj

52 ReE
0

`

A1e2jm1rJ0~jr !j dj

5
2

r 2
ReF A1m1

~11m1
2!3/2G , Re~m1!.0, ~32!

where we use the zeroth-order Hankel transform formula

E
0

`

J0~jr !je2aj dj5
a

~r 21a2!3/2
, Re~a!.0. ~33!

From Eq.~28!, the pressureP is expressed as

P52
Q

p

r1

r2

1

r 2
sS

4 ReF A1m1

~11m1
2!3/2G . ~34!

Similarly, by introducing

s-
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A25jF a2p

]DH~j,p!/]pG
p5 i j/sSgR1

,

~35!

A35Fa2

a1

pj2

]DH~j,p!/]pG
p5 i j/sSgR1

,

the vertical and radial components of the displacement in
fluid are obtained:

w15
Q

p

sS
4

r2

1

r
ReF A2

~11m1
2!1/2G ,

~36!

u152
Q

p

sS
2

m

1

r
ReS F12

m1

~11m1
2!1/2GA3D ,

Re~m1!.0.

Care should be taken with the square root when ca
lating m1,2 from Eq. ~30!. To have bounded results, only th
branch that gives Re(m1).0 should be selected.

B. Displacement and stress in the solid half-space

The response of the leaky Rayleigh wave in the so
can be obtained in a similar way. Introducing

np1,25
1

gR1,R2
F6

z

r
AgR1,R2

2 2q22 i tG ,
~37!

ns1,25
1

gR1,R2
F6

z

r
AgR1,R2

2 212 i tG
yields

@2a2z1pt#p5 i j/sSgR1,R2

52j
r

gR1,R2
F6AgR1,R2

2 2q2
z

r
2 i tG52jrnp1,2,

~38!
@2bz1pt#p5 i j/sSgR1,R2

52j
r

gR1,R2
F6AgR1,R2

2 21
z

r
2 i tG52jrns1,2.

The real part of Eq.~38! must be negative to have bounde
responses, therefore the real parts ofnp1 , np2 , ns1 , ns2 must
be positive. Using the similar argument for dealing w
m1,2, only those results ofnp1 , np2 , ns1 , ns2 that have
positive real parts are acceptable. In addition,np1 , np2 and
ns1 , ns2 should be complex conjugate pairs.

Applying the inverse Hankel and Laplace transforms
Eq. ~14! and calculating the residues at Rayleigh poles yie
the displacements and stresses in the solid,

w25
Q

p

sS
2

r2

1

r
ReF B1

A11np1
2

2
B2

A11ns1
2 G ,

u25
Q

p

sS
2

r2

1

r
ReFB3S 12

np1

A11np1
2 D

2B4S 12
ns1

A11ns1
2 D G ,
~39!
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r 2
ReF B5np1

~11np1
2 !3/2

2
B6ns1

~11ns1
2 !3/2G ,

tzr25
Q

p

1

r 2
ReF 2B7

~11np1
2 !3/2

1
B7

~11ns1
2 !3/2G ,

where the coefficients are

B15F sS
2p212j2

p]DH~j,p!/]p
a2jG

p5 i j/sSgR1

,

B25F 2j3a2

p]DH~j,p!/]pG
p5 i j/sSgR1

,

B35F ~sS
2p212j2!

p]DH~j,p!/]p
j2G

p5 i j/sSgR1

, ~40!

B45F 2j2a2b

p]DH~j,p!/]pG
p5 i j/sSgR1

,

B55F ~sS
2p212j2!2

p]DH~j,p!/]pG
p5 i j/sSgR1

,

B652B4 , B752B1 .

The expressions in Eq.~39! are only valid in the region
where Re(np1,p2).0 and Re(ns1,s2).0. Other stress compo
nents in the solid can be derived from the following stres
displacement relations:

t rr 25~l212m!
]u2

]r
1l2S u2

r
1

]w2

]z D ,

~41!

tuu25~l212m!
u2

r
1l2S ]u2

]r
1

]w2

]z D .

C. Attenuation and dispersion of leaky Rayleigh
waves

In addition to the geometric decay due to the effect
point loading, which varies as 1/Ar along the interface for
the Rayleigh wave, there is another type of attenuat
caused by continuous radiation~leakage! of energy into the
fluid. In frequency domain, the solutions are exponen
functions of (2jr ), wherej has the physical meaning o
wavenumber. According to Eq.~32!, higher frequency~larger
j! contents give more attenuation during propagation. The
fore the waveform generated by a transient loading beco
wider with increasing distance, i.e., it shows dispersion pr
erty due to leakage-induced attenuation, although the ph
velocity of leaky Rayleigh waves does not vary with fr
quency.

VII. SCHOLTE WAVE RESPONSE

The real roots of the Scholte equation correspond
Scholte wave propagation along the interface. The Sch
wave solutions can be obtained by calculating the residue
the polesg56gsch. For common cases of light fluids lying
2107Zhu et al.: Leaky Rayleigh and Scholte waves
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on stiff solids, the rootugschu5ssch/sS is slightly larger than
u5sF /sS . Therefore, Eqs.~31! and ~38! are changed to

@a1z1pt#p5 i j/6sSgsch
52jrm1,2

sch,

@2a2z1pt#p5 i j/6sSgsch
52jrnp1,2

sch , ~42!

@2bz1pt#p5 i j/6sSgsch
52jrns1,2

sch ,

where

m1,2
sch52

1

gsch
SAgsch

2 2u2
z

r
6 i

t

sSr D ,

np1,2
sch5

1

gsch
SAgsch

2 2q2
z

r
6 i

t

sSr D , ~43!

ns1,2
sch5

1

gsch
SAgsch

2 21
z

r
6 i

t

sSr D .

The solutions for the leaky Rayleigh wave are also valid
the Scholte wave by substitutingmsch, np

sch, andns
sch for m,

np , and ns . The first terms in the expressions of Eq.~43!
represent the real parts, which are positive and result in
decay inz direction. It can be seen that the Scholte wa
decays exponentially inz direction in both the fluid and the
solid. For lighter fluid cases, i.e., where the acoustic imp
ance of the fluid is less than that of the solid,Agsc

2 2u2 is
much smaller thanAgsc

2 2q2 and Agsc
2 21. This indicates

that the Scholte wave attenuates much more quickly in
solid than in the fluid. Therefore, in contrast to the lea
Rayleigh wave, most of Scholte wave energy is localized
the fluid ~Gusevet al., 1996!. The Scholte wave generatio
efficiency increases with increasing acoustic impedance
the fluid. For example, it is much easier to generate Sch
waves in the water/concrete configuration than the
concrete configuration. In fact, almost no Scholte wave ef
can be observed in the air/concrete case. With increa
impedance of the fluid, Scholte waves have deeper pen
tion depth in the solid. This property provides the possibil
for NDT application of Scholte waves, which was studi
experimentally by Glorieuxet al. ~2001!. Because there is no
leakage during Scholte wave propagation along the ra
direction, the decay in the radial direction is only attribut
to the geometrical effect. In 2-D cases, the Scholte w
travels without attenuation along the propagation direct
~Glorieux et al., 2001!.

VIII. COMPARISON OF THE EXACT AND SIMPLIFIED
SOLUTIONS

Figure 6 shows the comparison of the exact and sim
fied analytical solutions for fluid pressure for the wat
concrete case. In Fig. 6~a!, when the receiver position i
close to the interface (r 51.5 m, z520.05 m), good agree
ment is observed around the leaky Rayleigh and Sch
wave arrival times. The small yet noticeable differences
fore the leaky Rayleigh and Scholte wave arrivals are du
the absence of leaky body waves and fluid acoustic wave
the simplified solution. When the receiver is away from t
interface, as shown in Fig. 6~b! for receiver positionr
51.5 m, z520.5 m, the degree of agreement between
2108 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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simplified and exact analytical solutions decreases. Gene
speaking, the simplified solution provides better estimat
of pressure for largerr and smalleruzu cases, where the con
tribution of body waves is negligible.

Figures 7~a! and ~b! show the comparison of the exa
and simplified solutions for the air/concrete case. The
ceiver positions arer 51.0 m, z520.05 m andr 51.0 m, z
520.5 m, respectively. Good agreement is observed n
the leaky Rayleigh wave arrival time for both position
while obvious differences can be seen near the Scholte
fluid acoustic wave arrival times. The reason is that the le
Rayleigh wave is well separated from the fluid acous
wave, and Scholte wave contribution is very small compa
to the acoustic wave contribution in the fluid for air/concre
case, even in the near-interface region. Therefore, for
air/concrete configuration, the pressure field in the fluid
dominated by leaky Rayleigh and fluid acoustic waves.
air-coupled sensing, the leaky Rayleigh wave is usually
component in which we are interested. The acoustic w
contribution in the fluid can be separated by increasing m

FIG. 6. Comparison of the exact and simplified solutions for water/conc
case. Pressure in the fluid at position~a! r 51.5 m, z520.05 m, and~b! r
51.5 m,z520.5 m. The interface is subject to a point load that varies w
time asf (t)5sin2(pt/T) with T5200 ms. Material parameters for the fluid
r151000 kg/m3, cF51500 m/s; and for the solidr252400 kg/m3, cP

54000 m/s,v50.25.
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suring distancer between receivers and the source, or elim
nated by employing the directional property of the a
coupled sensor~Zhu et al., 2001!.

The excitation effectiveness of leaky Rayleigh wav
induced by an impact point load can be inferred from Fig
For a typical impulse forcef (t)5sin2(pt/T) with a modest
peak value of 1 kN and durationT5200ms, the output pres-
sure of the leaky Rayleigh wave is 0.1–0.15 Pa, which
approximately equivalent to a sound pressure level of 75
Such a pressure is large enough to be detected readily b
air-coupled sensor, even when material attenuation eff
are considered. The excitation effectiveness of leaky R
leigh waves is dependent on the impact force durati
Shorter force durations give higher output pressure of le
Rayleigh waves. For example, when the duration is
creased toT550ms, the output peak pressure of the lea
Rayleigh wave will increase to 1.2 Pa~95 dB!. Most impac-
tors used for concrete testing will generate transient for
with duration between 50 and 200ms.

IX. CONCLUSIONS

The exact analytical solution to the ‘‘Lamb’’ problem i
a fluid/solid half-space system is derived by the Cagniard

FIG. 7. Comparison of the exact and simplified solutions for air/conc
case. Pressure in the fluid at position~a! r 51.0 m, z520.05 m, and~b! r
51.0 m,z520.5 m. The interface is subject to a point load that varies w
time asf (t)5sin2(pt/T) with T5200 ms. Material parameters for the fluid
r151.21 kg/m3, cF5343 m/s; for the solid r252400 kg/m3, cP

54000 m/s,n50.25.
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Hoop method. Simplified formulations are also derive
which provide an easy and quick way to estimate leaky R
leigh and Scholte wave contributions. The following conc
sions can be drawn based on the analysis:

~1! A transient point load applied to the interface is an
fective way to generate leaky Rayleigh waves in t
fluid. For air-coupled wave detection in concrete, the e
citation effectiveness of leaky Rayleigh waves is arou
0.1–1.0 Pa/kN, depending on the impact force durati

~2! For the light fluid/heavy solid case, the leaky Raylei
wave is separable from Scholte and acoustic waves
the fluid when distancer is large enough, wherer de-
pends on velocities of leaky Rayleigh, Scholte, a
acoustic waves, vertical distanceuzu, and force duration.
For the air–concrete configuration shown in Fig. 7~a!,
whereuzu50.05 m andr .0.2 m, the difference in arriva
time between leaky Rayleigh and acoustic waves
.362 ms. Therefore the received signals will be dom
nated by leaky Rayleigh waves, which provide importa
material information of the underlying solid.

~3! Simplified solutions are obtained when contributio
from leaky Rayleigh waves and Scholte waves po
only are considered. Equations~34!–~36! and ~39! give
the solution to responses in the fluid and solid, resp
tively. The simplified solution accurately simulates th
transient pressure field response for the air/concrete
when the fluid acoustic wave contribution is removed
separated.

~4! The Scholte wave contribution is prominent in the ne
interface region for the water/concrete case. Beca
most of the energy of Scholte waves is localized in t
fluid, however, Scholte wave properties are not very s
sitive to the variation of the underlying solid material
which limits the NDE application of Scholte waves fo
the common light fluid/heavy solid cases.
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